NASA CR-132552
{HASA~CR=1325E2) DEFINITICOHK AND TRADE~CGFF N75-15325
STUDY OF RECCNFIGURABLE AIEKBORNE DIGITAL
CCHPUTER SYSTEM ORGANIZATICNS Final Eeport,
9 gct, 1873 - 8 Nov, 1974 (Ultrasystems, Onclas

Inc., Hewport Beach, Calif.) 301 p HC $9.25 G3,/60 06803

DEFINITION AND TRADE-OFF STUDY OF
RECONFIGURABLE AIRBORNE DIGITAL
COMPUTER SYSTEM ORGANIZATIONS

FINAL REPORT

NOVEMBER 1974

PREPARED UNDER
NASA CONTRACT NASI-12793
FOR
NASA LANGLEY RESEARCH CENTER
HAMPTON, VIRGINIA

RECONFIGURABLE COMPUTER
SYSTEMS STUDY

FINAL REPORT

CONTRACT SCHEDULE ITEM lI-E

prepared for
Langley Research Center
National Aeronautics and Space Administration
Hampton, Virginia 23665

Contract NAS1-12793

by

Ultrasystems, Inc.
500 Newport Center Drive
Newport Bedach, California 92660

- November 1974

— 736079

FOREWORD

This Final Report was prepared by Ultrasystems, Incorporated, Newport
Beach, California, under National Aeronautics and Space Administration contract
NAS1-12793. The work was performed between 9 October 1973 and 8 November 1974,
Sponsorship for this work was provided by the Flight Instrumentation Division,
Electronics Directorate, Langley Research Center. The Project Monitor was
Mr. J. Larry Spencer with technical assistance provided by other members of the
Aircraft Electronics Research Section.

The Ultrasystems' Study Leader was Ralph B. Conn. Other participants
in the study were Dr. A. A. Avifienis, Mr. H. 0. Lévy, Dr. P. M. Merryman,
Mr. S. R. Pond, Dr. D. A. Rennels, Dr. J. A. Rohr, and Mr. K. L. Whitelaw.

Publication of this report does not constitute NASA approval of the
findings or conclusions indicated in the report. It is published for the
exchange of information and stimulation of ideas.

RECONFIGURABLE COMPUTER SYSTEMS STUDY
FINAL REPORT

TABLE OF CONTENTS

1.0 SUMMARY AND INTRODUCTION

2.0

1

1.

1

o o~ oy

A

.9

OBJECTIVE, ACCOMPLISHMENTS, AND CONCLUSIONS

1.1.1 Objective .

1.1.2 Accomplishments .
1.1.3 Conclusions
INTRODUCTION .

SYSTEM ORGANIZATION CONCEPTS

1.3.1
1.3.2
1.3.3

"Mostly" - Software Configurations
Hardware - Aided Software Configurations (HASW)

Most]y-Hardwaﬁe Confiqurations .

EXECUTIVE STRUCTURE

MEASURES OF FAULT-TOLERANCE .

ANALYTIC MODELING

SIMULATION

COMBINED ANALYTIC-SIMULATIVE TECHNIQUE

RECOMMENDATIONS .

SYSTEM ORGANIZATION CONCEPTS

2.1

"MOSTLY
2.1.1

2.1.1.1
2.1.1.2
2.1.1.3

2.1.1.4

"-SOFTWARE REDUNDANT CONFIGURATION (MSW)

Internal Communications for Fault Detection and

Transient Recovery .

Voting and Synchronization
Transient Recovery Techniques
Transient Recovery - Implementation

Utilization of Transient Recovery Techniques

ii

PAGE

2-12

2.2

2.
2.

]
1

5.
.5.

—

R~

d

L7

7
8

RECONFIGURABLE COMPUTER SYSTEMS STUDY
FINAL REPORT

TABLE OF CONTENTS (Cont'd)

Redundant I/0 Structures for Communications with

Fault Masking .

Dedicated Busses .

Non-Dedicated Switched Busses
Executive Program Considerations
Yoter Module

Input/Output Module .

Error-Handler Module

Applications Programs Considerations
Machine Features and RETs .

Machine Features .

Reliability Enhancement Techniques .
Machine Options

Fault Detection

Transient Recovery

Internal Cross Connections

1/0 Structures

Bus Fault-Detection .

HARDWARE-AIDED SOFTWARE CONFIGURATIONS (HASW)

2.2.1

2.2.1.1

The External Electronics Module (EEM) .

Case 1 - No Faults

2.2.1.2 Case 2 - One Computer Disagrees .

2.2.1.3 The Transient Recovery Mechanism

2.3

2.
2.

2.4.

2.

RECONFIGURABLE COMPUTER SYSTEMS STUDY

FINAL REPORT
TABLE OF CONTENTS (Cont'd)

Case 3 - Multiple Faults .
Residual Duplex and Augmented Voting Redundancy

A Recovery Algorithm: Hardware-Aided Software
Configuration . e e

Hardware EEM Functions

The Software Function .
Utilization of Redundant EEM Units
Non-Dedicated Redundant EEMs

4,2 Dedicated EEMs

MOSTLY-HARDWARE CONFIGURATIONS

2.3.1

2.3.1.1

2.3.2

2.3.2.1

2.3.2.2

2.3.3

Augmented EEM Units

The State Control Function

Recovery Control

Memory Copy Implementation

Rollahead - Rollback - Copy Implementation .
A Comparison of MHW and HASW Implementations

3.0 EXECUTIVE STRUCTURE

3.1
3,2

DESIGN GOALS

SKELETON MODULES
3.2.1 Scheduler .

3.2.2 Input-Output Driver

3.2.3 Interrupt Processor

3.2.4 Machine Error Handler .

3.2.5 Interaction

iv

PAGE
2-39
2-40

2-40
2-41
2-44
2-45
2-45
2-47
2-48
2-49
2-49
2-49
2-52
2-54
2-54
3-1

3-1

3-2

3-4

3-5
3-6
3-6

RECONFIGURABLE COMPUTER SYSTEMS STUDY
FINAL REPORT

TABLE OF CONTENTS {Cont'd)

PAGE
3.3 SCHEDULING MECHANISMS 3-7
3.3.1 Synchronous Ce 3-8

3.3.2 Synchronous with Asynchronous Overlay 3-10

3.3.3 Hybrid + 310

3.3.4 Hybrid with External Interrupts 3-10

3.3.5 Constrained Asynchronous 3-12

3.3.6 Comparison and Contrast 3-12

3.4 ADAPTABILITY+ .« « « +« .+« .+« « « .« . 33

3.5 SOFTWARE STRUCTURE AND FAULT-TOLERANCE IMPLEMENTATION . . 3-14

3.5.1 Software Structure Considerations for a Duplex
System 3-14
3.5.1.1 Executive Scheduling Mechanisms 3-14
3.5.1.2 Typical Computational Cycle 3-16
3.5.1.3 Redundancy Requirements 3-18
3.5.1.4 Tradeoffs+ . . . 319
3.5.2 Software Structure Considerations for a TMR
System00 0.0 3-21
3.5.2.1 Executive Scheduling Mechanisms 3-2]
3.5.2.2 Typical Computational Cyc]e e e e e e . 322
3.5.2.3 Redundancy Requirements 3-23
3.5.2.4 Tradeoffs 3-24
4.0 MEASURES OF FAULT-TOLERANCE 44
4.1 THE CONCEPT OF FAULT-TOLERANCE 41
4.1.1 The Reliability Problem for Computers 4-]

4.1.2 "Fault-Intolerant" Design for Reliable Operation . 4-2

RECONFIGURABLE COMPUTER SYSTEM STUDY
FINAL REPORT

TABLE OF CONTENTS (Cont'd)

- 4.1.3 Design of "Fault-Tolerant" Systems .

4.2 QUANTITATIVE SPECIFICATION OF FAULT-TOLERANCE
4.2.1 Classification of Measures
4,2,2 Discrete Fault Tolerance (DFT)
4.2.3 Reliability
4.2.4 Survivability .
4,2.5 Quantitative Measures of Survivability
5.0 ANALYTIC MODELING
5.1 MODELING APPROACH
5.1.1 General .
5.1.2 Solution Approach
5.2 TRANSIENT FAULTS .
5.2.1 Transient Arrival
5.2.2 Transient Duration
5.3 TRANSIENT RECOVERY MODEL
5.3.1 Components of Transient Recovery
5.3.2 Fault Cetection
5.4 ANALYSIS OF AN ENHANCED TMR CONFIGURATION

5.4.1 Definitions and Assumptions . .
5.4.2 Failure Probability .
5.4.3 Transient Leakage

5.4.4 Transient Coverage

5.4.5 Simplifying Assumptions for Shorter Mission:

Times e e e e e e

5.4.6 Extension of TMR Modeling to N Computers .

vi

PAGE

4-5
4-5
4-6

4-9
4-1

RECONFIGURABLE COMPUTER SYSTEM STUDY
FINAL REPORT

TABLE OF CONTENTS (Cont'd)

PAGE
5.4.6.1 Fault/Recovery State Diagram b5-18
5.4.6.2 Definitions and Review 5-20

5.4.6.3 Finding Failure Probability for Four Computers . . 5-22

5.4.6.4 Finding the Failure Probability for Five

Computers+ . . « .+ .+ « « . . 523
5.4.6.5 Generalization to N Computers 5-25
5.4.7 Recovery Start Delay b5-25

5.5 MODELING OF GENERAL CONFIGURATIONS 5-28

5.5.1 The Recovery Process 5-28
5.5.1.7 Coverage+ + +« + « & « « . . b-28
5.5.1.2 Transient Leakage b5-29
5.5.1.3 Permanent Recovery« .+ 529
5.5.1.4 Notation System. e e e e e e e e e ... 5-30
5.5.2 Analysis of a Duplex Configuration 5-30
5.5.2.1 Definitions and Assumptions 5-30
5.5.2.2 Fault/Recovery State Diagram 5-31
5.5.2.3 Failure Probability 5-32
5.5.3 Extension to N Computers 5-34
6.56.3.1 State Diagram. 5-34
5.5.3.2 Failure Probability Determination 5-36
5.5.3.3 General Solution 5-37
5.5.4 Simplifying Assumptions 540
5.5.4.1 Simplex b5-40
5.6,4,2 Duplex« 5N

5.5.4.3 Enhanced TMR 54

vij

5.6

5.5.4.4
MARKOV
5.6.1
5.6.1.1
5.6.1.2
5.6.1.3
5.6.1.4
5.6.2
5.6.2.1
5.6.2.2
5.6.2.3
5.6.3
5.6,3.1
5.6.3.2
5.6.4
5.6.4.1
5.6.4.2
5.6.5

6.0 SIMULATION

6.1

0BJECTI
6.1.1
6.1.2

6.1.3

RECONFIGURABLE COMPUTER SYSTEM STUDY
FINAL REPORT

TABLE OF CONTENTS (Cont'd)

Adaptive TMR .
CHAIN ANALYSIS METHOD
Mathematical Model .
Development of the Differential Equation
Solution Procedure .
Closed Form Solution
Power Series Evaluation of P(t)
Application to the Duplex Configuration .

Determination of the Transition Matrix .

Closed Form Solution for Duplex Configuration .

Approximation for Small Mission Times

Application to Adaptive TMR Configuration

Determination of the Transition Matrix
Approximations for Small Mission Times
Programs

Projector Method

Power Series Method . . .
Conclusions

VES OF SIMULATION .
Configuration Fault-Tolerance

Determination of Global Parameters Used in
Analytical Modeling

Fault Environment

viii

PAGE
5-42
5-42
5-42
5-44
5-47
5-48
5-49
5-50
5-50
5-53
5-46
5-58
5-58
5-59
5-60
5-60
5-61
5-62
6-1

6-1

6-1
6-2

RECONFIGURABLE COMPUTER SYSTEMS STUDY
FINAL REPORT

TABLE OF CONTENTS (Cont'd)

PAGE

6.2 GENERAL ORGANIZATION OF THE SIMULATION 6-2
6.2.1 General Approach+ .+ . . 6-2
6.2.2 Organization of the Simulator 6-3

6.3 INPUTS/QUTPUTS . . + + « &« « o o « « « « 6-8

6.3.1 Inputs . . . « . < . < . . e .. . 6-8
6.3.1.1 Detection Probabilitjes 6-10
6.3.1.2 Self-Test Program Efficiency 6-12
6.3.1.3 Dedicated/Non-Dedicated EEMs 6-12
6.3.1.4 Existing Recovery Algorithms 6-12
6.3.1.5 Unacceptable Recurrence Intervals 6-12
6.3.1.6 Program Integrity« .« 6-12
6.3.1.7 Memory Copy Efficacy+ .+ . 6-13
6.3.2 Output e e e e 6-13
6.4 STATE DIAGRAM+ « « « « « « .+ 6-14
6.4.1 Normal Operation {3 or more Units) 6-14
6.4.2 Rollahead (or State Vector Transfer 6-17
6.4.3 Memory Copy+« « « « « .+ .+ . . 6-17
6.4.4 System Restart+ .+ .+ . .« 6-17
6.4.5 Introduction of a Spare 6-18
6.4.6 Normal Operation (2 Units) 6-18
6.4.7 Rollback+ . .+ .+ .+ .+ .+ « .+ . 6-18
6.4.8 Diagnosis+ . .« 6-19
6.4.9 Normal Operation (Simplex) 6-19
6.4.10 Rollback in Simplex+ . . 6-19

ix

6.5

6.4.11

RECONFIGURABLE COMPUTER SYSTEMS STUDY

FINAL REPORT
TABLE OF CONTENTS (Cont'd)

System Failure .

SIMULATOR IMPLEMENTATION

6.5.1

6.

6
6.
6

5.

[Sa N & NS 1|

it o0
~N o o

1.

b B W N

B W™

(=]

Fault Generation
Introduction

Parameters

‘Description of the Fault Table

General Organization of the Fault Generator

Determination of the Occurrence Time of the Faults
According to a Poisson Distribution Function .

Determination of the Duration .
Determination of the Occurrence Time of the
Faults According to a Burst Distribution
Function . . .
Normal Operation (3 or More Units)
Rollahead

Other States

Introduction of the Scheduling Mechanisms .
Synchronous Scheduling

Detection of Faults

Iteration Losses

Asynchronous Scheduling .

EEM Faults

Dedicated EEMs .

Non-Dedicated EEMs

Input-Qutput Faults

Dedicated Buses

PAGE
6-20
6-21
6-21
6-21
6-21
6-23
6-23

6-23
6-27

6-27
6-27
6-27
6-31
6-31
6-33
6-33
6-33
6-34
6-34
6-34

 §-34

6-35
6-35

RECONFIGURABLE COMPUTER SYSTEMS STUDY
FINAL REPORT

TABLE OF CONTENTS (Cont'd)

PAGE

6.5.7.2 Non-Dedicated Buses 6-38

6.6.1 Fault Generator b6-38

6.6.2 Simutator b-38

6.7 SAMPLERUN+ .+« < .+ « « .« . . 6-39
7.0 PARAMETERS « « « « v o« e e ee e 14
7.1 SIMULATOR & o v e e e e e e 1
7.7.1 STP Efficiency+ .+ .+ .+ . . 14
7.1.1.1 STP Requirements 7-
7.1.1.2 Efficiency Estimation 7-2
7.1.1.3 Typical Computers 1-3

7.1.2 Program Integrity 1-3
7.1.2.1 CPUFaults + .+ + « « « « . . 7-3
7.1.2.2 Memory o+« 4 4 e o« o+« e o 13
7.1.2.3 PI Estimation 7-4
7.1.3 BITE Efficiency 1-6
7.1.3.1 CPU BITE Efficiency [I-6
7.1.3.2 Memory BITE Efficiency T-6
7.2 ANALYTIC MODEL+ .+ .+ « .« . . 1I-7
7.2.1 Computer Effective Failure Rate 7-7
7.2.2 Recoverability 71-8
7.2.3 Transient Leakage 7-8
8.0 COMPLEMENTARY ANALYTIC-SIMULATIVE TECHNIQUE 8-]
8.1 OVERALL STRUCTURE 8-
8.2 RCS ENGINEERING ANALYSIS 8-

Xi

9.0

RECONFIGURABLE COMPUTER SYSTEMS STUDY
FINAL REPORT

TABLE OF CONTENTS (Cont'd)

8.3 SIMULATION

8.4 ANALYTIC MODELING

CONFIGURATION ANALYSES AND TRADE-OFF STUDIES

9.1 GENERAL,

9.2 PARAMETERS USED FOR EVALUATION .

9.
9.
9.

O
[A]

w
M

2.
2.
2.

[t

1

1.
1.

Mostly-Software Configurations .
Physical Parameters . . ., .
Software Characteristics .

Parameters Affecting Fault Tolerance in the
Computers . e e e e

Parameters Affecting Fault Tolerance in the
External Hardware

Transient Fault Recovery Parameters
Permanent Fault Recovery Parameters
Modeling Parameters . ., . _
Hardware-Aided-Software Configurations
Physical Parameters

Software Characteristics . .

Parameters Affecting Fault Tolerance in the
Computers . . .

Parameters Affecting Fault Tolerance in the
External Hardware .

Fault Recbvery Parameters
Modeling Parameters

Mostly-Hardware Configurations .

Xiid

PAGE

8-3
9-1
9-1

9-2
9-2

9-4

9-4

9-5

9-5

9-5

9-6

9-6

9-6
9-6
9-6

RECONFIGURABLE COMPUTER SYSTEMS STUDY
FINAL REPORT

TABLE OF CONTENTS (Cont'd)

PAGE

9.3 GENERATION OF RESULTS+ .« .« . « . . 9-8

9.3.1 Aﬁsessed Configurations 9-9

9,.3.1.1 Quintuplex Configurations 99
9.3.1.2 Quadruplex Configurations 9-13
9.3.1.3 Triplex Configurations 9-13
9.3.2 Fffect of Redundancy 922
9.3.3 Effect of Non-Unity Recoverability 9-24
9.3.4 Effects of Adaptivity 9-26
9.3.5 Effects of RETs 9-26
9.3.5.1 DROVersus NDRO 9-26
9.3.5.2 Effects of BITE. « . « . . . 932
9.3.5.3 Effects of Diagnostics 9-34
9.3.5.4 Codes and I1/0 Wraparound 9-34

9.3.5.5 Reasonableness Tests and Sensor Redundancy

Management+« <« 9-35

9.3.5.6 Voters, Adaptive Voters, and Comparators . . . 9-38

9.3.5.7 Dedicated/Non-Dedicated I/0 Units 9-39
9.3.5.8 Independent Hardware Monitor 9-39
9.3.6 Effects of Transients 9-40
9.3.6.1 Introduction of Transient Recovery 9-40
9,3.6.2 Transient Recovery Algorithms 9-40
9.3.6.3 Influence of Transient Duration 9-4]
9.3.6.4 Influence of Bursts of Transients 9-4]
9.3.7 Scheduling Effects 9-42

xiii

RECONFIGURABLE COMPUTER SYSTEMS STUDY
 FINAL REPORT

TABLE OF CONTENTS (Cont'd)

PAGE

9.4 CONCLUSIONS+ . . .+ « <« « + .+ 9-45

REFERENCES

xiv

THIS PAGE INTENTIONALLY LEFT BLANK

XV

-1

-1

-2

1-3
1-4
.1-5
.1-6
1-7
.2-1

.2-2
.2-3a

.2=3b

L2-4
.3-1
.3-3
.2-1

.3-1

.2-1

RECONFIGURABLE COMPUTER SYSTEMS STUDY
‘ FINAL REPORT

LIST OF FIGURES

EFFECTS OF RCS REDUNDANCY AND ADAPTABILITY ON FAILURE
PROBABILITY . . . - e e .

SIMULATOR STATE DIAGRAM .

MSW INTERNAL CROSS—CONNECTIONSV
SYNCHRONIZATION AND VOTiNG SCENARIO .
DEDICATED BUSSES.

NON-DEDICATED, SWITCHED BUS CONFIGURATION .
VOTER MODULE LOGIC

INPUT - QUTPUT LOGIC - ADDITIONS .

ERROR MODULE LOGIC - ADDITIONS

EXTERNAL HARDWARE INTERFACE: HARDNARE-AIDED SOFTWARE
CONFIGURATION e e e e e e e e

THE EXTERNAL ELECTRONICS MODULE (EEM)

RECOVERY SOFTWARE - (ROLLAHEAD) HARDWARE - AIDED
CONFIGURATION . e e e e

RECOVERY SOFTWARE - (MEMORY COPY) HARDWARE -AIDED
CONFIGURATION

REDUNDANT EEM IMPLEMENTATIONS .

AUGMENTED EEM FOR MOSTLY-HARDWARE CONFIGURATIONS
AUGMENTED EEM RECOVERY ALGORITHMS

THE EXECUTIVE MODULES USE INTERMODULE CALLS FOR SERVICES

WHICH ARE REQUIRED BY ONE MODULE BUT PROVIDED BY ANOTHER .

EXECUTIVE SCHEDULING MECHANISM TYPICAL TIME LINES .

COMPARISON OF EXECUTIVE SCHEDULING MECHANISMS
QUADDED DIODES, d=1

PRECEDING PAGE BLANK NOT FILMLED

xvi

PAGE

2-42

2-43

2-46
2-51
2-53

RECONFIGURABLE COMPUTER SYSTEMS STUDY
FINAL REPORT

LIST OF FIGURES (Cont'd)

PAGE
4.2-2 COMPUTERS IN TMR CONFIGURATION &7
5.1-1 FAULT RECOVERY STATE DIAGRAM OF A TMR CONFIGURATION 5-3
5.3-1 PROBABILITY DENSITY FUNCTION OF THE TIME TO FAULT DETECTION . 5-7
5.3-2 UNIFORM-EXPONENTIAL APPROXIMATION TO THE FAULT DETECTION TIME

DENSITY FUNCTION . . . : : . 5-9
5.4-1 FAULT RECOVERY MODEL OF A TMR CONFIGURATION G5-11
5.4-2 EXTENSION OF ENHANCED TMR MODEL TO N COMPUTERS 5-21
5.4-3 FAILURE PROBABILITY FOR FIVE COMPUTERS 5-27
5.5-1 FAULT OCCURRENCE/RECOVERY STATUS STATE DIAGRAM FOR A DUPLEX

CONFIGURATION . . Coe e . . . 5-33
5.5-2 FAULT OCCURRENCE/RECOVERY STATUS STATE DIAGRAM FOR 1-5

COMPUTER CONFIGURATIONS + 535
5.6-1 MARKOV CHAIN EXAMPLE 543
5.6-2 STATE DIAGRAM FOR THE DUPLEX CONFIGURATION 5-5]
6.2-1 SIMULATOR STATE DIAGRAM « + + + . . . 6-5
6.2-2 GROSS ORGANIZATION OF THE SIMULATION 6-6
6.2-3 PRINCIPLES OF A FAULT DRIVEN SIMULATION (BOX 3 OF FIGURE

6.2-2) . . . Coe . .o . . 67
6.2-4 RCS HANDLING OF FAULTS (BOXES 3, 4, 5 OF FIGURE 6.2-3) . . . 6-9
6.3-1 LIST OF INPUT PARAMETERS =+« « + .+ « « .« . . 6-11
6.4-1 SIMULATOR DETAILED STATE DIAGRAM 6-16
6.5-1 GENERAL ORGANIZATION OF THE FAULT GENERATOR 6-24
6.5-2 GENERATION OF THE OCCURRENCE OF THE FAULTS IN ONE MODULE

(POISSON DISTRIBUTION) 6-28
6.5-3 NORMAL OPERATION STATE I '. . . 6-29
6.5-4 ROLLAHEAD STATE IT FLOWCHART 6-30
6.5-5 EXAMPLE OF DEDICATED BUS CONFIGURATION 6-37

xvii

7=
-1

RECONFIGURABLE COMPUTER SYSTEMS STUDY
FINAL REPORT

LIST OF FIGURES (Cont'd)

SOFTWARE TMR WITHOUT MEMORY COPY .

FAULT-TOLERANCE MEASURES CAN BE PRODUCED THROUGH A COMBINATION
OF ENGINEERING ANALYSIS, SIMULATION, AND ANALYTIC MODELING

CAST SUMMARY DIAGRAM .,

QUINTUPLEX FAILURE PROBABILITY VERSUS MISSION TIME FOR
NON-ADAPTIVE BUSSES . . .

QUINTUPLEX FAILURE PROBABILITY VERSUS MISSION TIME FOR
NON-ADAPTIVE BUSSES . e e e e e

QUINTUPLEX FAILURE PROBABILITY VERSUS MISSION TIME FOR
ADAPTIVE BUSSES . . o e e e e e e

QUADRUPLEX FAILURE PROBABILITY VERSUS MISSION TIME FOR
NON-ADAPTIVE BUSSES

QUADRUPLEX FAILURE PROBABILITY VERSUS EXTENDED MISSION TIME
FOR NON-ADAPTIVE BUSSES . . e e e e e

QUADRUPLEX FAILURE PROBABIITY VERSUS MISSION TIME FOR
ADAPTIVE BUSSES . ., . e e e

TRIPLEX FATLURE PROBABILITY VERSUS MISSION TIME FOR
NON-ADAPTIVE BUSSES . . e e

TRIPLEX FAILURE PROBABILITY VERSUS EXTENDED MISSION TIME FOR
NON-ADAPTIVE BUSSES

PROBABILITY VERSUS EXTENDED MISSION TIME FOR 5, 4, 3 AND 2
COMPUTERS

EFFECTS OF NON-UNITY RECOVERABILITY ON FAILURE PROBABILITY
FOR EXTENDED MISSION TIMES e e .o

EFFECT OF ADAPTABILITY ON FAILURE PROBABILITY FOR EXTENDED
MISSION TIMES

10-HOUR FAILURE PROBABILITY VERSUS TRANSIENT FAULT RATE
10-HOUR FAILURE PROBABILITY VERSUS TRANSIENT FAULT RATE
10-HOUR FAILURE PROBABILITY VERSUS TRANSIENT FAULT RATE
COMPARISON OF CODED SIMPLEX, DUPLEX AND TMR BUSSES .

xviii

PAGE
6-41

9-20

9-21

9-23

9-25

9-28
9-30
9-31
9-33
9-37

THIS PAGE INTENTIONALLY LEFT BLANK

xix

.31
-1
L7-11
.3-1
.5-1
A1
.2-1

L3-111
L3-1V
3=V
L3-VI
.3-VII

.3-VIII
.3-1X
.3-X

RECONFIGURABLE COMPUTER SYSTEMS STUDY
LIST OF TABLES

SOFTWARE OVERHEAD OF FAULT-TOLERANT CONFIGURATIONS .

LIST OF

RCS SIMULATOR INPUTS

RCS SIMULATOR OUTPUTS

SOFTWARE OVERHEAD OF FAULT-TOLERANT CONFIGURATIONS .

SOFTWARE EFFECTS ON VoW

SUMMARY
LIST OF

2
OF EQUATIONS FOR THE TMR CONFIGURATION

INPUT PARAMETERS FOR MOSTLY SOFTWARE

CONFIGURATIONS

LIST OF
SUMMARY
SUMMARY
SUMMARY
SUMMARY
LEAKAGE
EFFECTS
FATLURE

INPUT PARAMETERS FOR HARDWARE CONFIGURATIONS
OF QUINTUPLEX CONFIGURATION ASSESSMENTS .

OF QUADRUPLEX CONFIGURATION ASSESSMENTS .

OF TRIPLEX CONFIGURATION ASSESSMENTS .

OF THE EFFECTS OF ADAPTABILITY . .
COEFFICIENTS .

OF BITE
PROBABILITIES AFTER 10 AND 100 HOURS FOR 4-MR

TMR WITH AND WITHOUT DIAGNOSTICS . . .

EFFECTS
EFFECTS
EFFECTS

OF REASONABLENESS TESTS
OF NON-DEDICATED SENSORS .
OF SCHEDULING

PRECEDING PAGE BLANK NOT FILMED

XX -

PAGE
1-9

1-18
1-19
2-48
3-20
5-19

9-3

9-11
9-15
9-19
9-27
9-29
9-32

9-34
9-36
9-38
9-43

THIS PAGE INTENTIONALLY LEFT BLANK

Xxi

AEEM
AGE

BITE
CAST

DFBW
DFT
DMA

Dyp
EEM
EH

FCS

HASW
I/0
MFP
MHW

LIST OF SYMBOLS AND ABBREVIATIONS

Height of uniform portion of uniform-expongntia] density de(t)
Augmented External Electronic Module
Aerospace Ground Equipment

Built-In Test-Equipment

Complehentary Analtyic-Simulative Technique
Transient -coverage in TMR

Digital Fly-By-Wire

Discrete Fault-Tolerance

Direct-Memory Access

Transient duration

Duplex - A two computer configuration
External Electronics Module

External Hardware

Set of failed machines _

System failure probability (1-5 or 1-R)
F1ight Control System

Fauit Detected

Failure probability due to a permanent or transient fault
when in the one computer faulty state (TMR model)

Failure probability due to a fault during a recovery process
(TMR model}

Probability density function of the fault detection time
Hardware-Aided Software
Input-Output

Mission Failure Probability (F) . ij&ﬁﬁﬁ
wot ¥
Mostly Hardware \:S

xxi1 PR

LIST OF SYMBOLS AND ABBREVIATIONS (Cont'd)

MSP Mission Success Probability (1-F)

MSW Mostly-Software

N Set of working and failed machines

NDRO Non-Destructive Read-Out

NMR N-Tuple Modular Redundancy

OR Output Ready

PI Program Integrity

PS Program Survivability -- synonymous with program integrity
RCS Reconfigurable Computer System

RET Reliability Enhancement Technique

ROM Read-Only Memory '

RTI Real-Time Interrupt

S Survivability (1-F when transient faults are included)
SIM Simplex - A single computer configuration

STP Self-Test Program

T Mission time

TC Time between state vector comparisons

Td Time between fault arrival and fault detection

TD Delay between fault detection and beginning of recovery procedure
TMR ‘Triple Modular Redundancy

TMR-A Triple Modular Redundancy - Adaptive

TMR-E Triple Modular Redundancy - Enhanced

TMR-H Triple Modular Redundancy - A1l Hardware

TMR-HA Triple Modular Redundancy

Hardware Aided

TMR-S Triple Modular Redundancy - A1l Software

xxiji

LIST OF SYMBOLS AND ABBREVIATIONS (Cont'd)

Recovery time Tv + Tw

Time to accomplish recovery procedure
Total recovery time Tu + TV + Tw
Interarrival time between faults

Time from fault occurrence to detection
Time from fault detection to diagnosis
Time from.fault diagnosis to recovery
Uniform random deviate between 0 and 1
Detectability with i operating computers
Diagnostibility with i operating computers
Set of working machines

Recoverability with i operating computers

Fault detection rate for exponential portion of the uniform-
exponential approximation to the fault detection time density

Rate parameter for the duration of a transient fault

Fault detection rate for the exponential approximation to the
fault detection time density

Ratijo of transient to permanent fault rates t/x
Permanent fault occurrence rate
Leaky transient plus permanent fault rate x + L1t in TMR

Permanent plus leaky transient rate with i operating computers
A+ L.t
i

At
Uncovered transient plus permanent fault rate x + (1-cT)r in TMR
Transient fault occurrence rate

Non-Teaky transient occurrence rate (1*LT)1

Xxiv.

LIST OF SYMBOLS AND ABBREVIATIONS (Cont'd)

L. Transient leakage with i operating computers

L Transient leakage in TMR

XXV

1.0 SUMMARY AND INTRODUCTION

1.1 OBJECTIVE , ACCOMPLISHMENTS, AND CONCLUSIONS

1.1.1 Objective

The objective of this study was to provide concepts and engineering

data from which a highly-reliable, fault-tolerant, reconfigurable computer

system (RCS) for aircraft applications could be designed.
of this study, an RCS is defined to be a redundant configuration of off-the-

shelf avionics computers which achieves fault-tolerance through use of a

variety of recovery techniques.

A principal study goal was the development

and application of reliability.and fault-tolerance assessment techniques.
Particular emphasis was placed on the needs of an all-digital, fly-by-wire
control system appropriate for a passenger-carrying airplane.

1.1.2 Accomplishments

The accomplishments of Contract NAS1-12793 are summarized in the

following five-item list.

1.

A complementary analytic-simulative technique (CAST)
for calculation of predicted failure probabilities of
multicomputer systems was evolved,

Measures of fault-tolerance applicable to general fault-
tolerant computer systems were defined.

CAST was applied to 39 example computer system configura-
tions to provide insight into the important aspects of
these configurations, as well as demonstrate the efficacy
of the approach.

A set of customer-provided reliability-enhancement techni-
gues (RETs) was expanded and their individual effectiveness
was evaluated.

A set of control laws for a digital fly-by-wire flight
control system was translated into flow charts and computer
sizing and timing for these were estimated (see Appendix A).

-1

‘For the purposes

1.1.3 Conclusions

The conclusions reported below were obtained by use of CAST,
They are based on a ten-hour flight and failure rates thought to be applicable
to the off-the-shelf avionics computers studied. The reconfigurable computer
systems were assumed to be composed of as many as five machines.

As shown in Figure 1.1-1, the greatest improvement in system
survivability is obtained by increased redundancy. Each increment of redun-
dancy decreases the 10-hour failure probability by approximately two orders
of magnitude. The greatest failure probability decrease occurs when changing
from triplex to quadruplex, e.g., a 200-fold improvement. Increasing redun-
dancy also increases cost in terms of power, weight, and volume not only due
to the added units but due also to the increased complexity of intercommunica-
tions modules, external electronics modules, and bus switches.

Intreasing redundancy has diminishing returns if there are errors
in permanent-recovery algorithm design. This error penalty becomes more
severe with added redundancy. Using simpler recovery algorithms, i.e., those
involving less RCS adaptivity, is a possible way of ensuring error-free recovery.
However, the increase in failure probability for air-transport-type missions
due to decreased adaptivity (e.q., not adapting the system down to one computer)
is less than that caused by decreased redundancy or recoverability.

Since redundancy has such a large effect on failure probability,
external hardware should have an equivalent redundancy to prevent external
failures from depressing the overall survivability.

Thé‘techniques reported here devote much attention to the modeling
of transient faults. The results show that:a knowledge of the transient
environment results in effective transient recovery features. Underestimating
transient duration results in many transients being recorded as permanent,
while overestimating transient duration leaves the system unduly vulnerable
to further faults.

Finally, subject to the qualifications and assumptions described in
the first paragraph of this subsection, configuration assessment has shown that
hardware-aided software configurations provide a lower probability of failure
than mostly-hardware or mostly-software configurations. |

1-2

Mission Time (Hours)

R 10 100 000
1077 b0 IR " 11

107

WOk Mo wT

Failure Probability

-
[an)
1
|

S } iwtex i FIGURE 1.1-1
2out of dm—2 L/ i) L EFFECTS OF RCS

/A A = I REDUNDANCY AND ADAPTABILITY
ON_FATLURE_PROBABILITY

1077 oL i
1 10

Mission Time (Hours)

1-3

1.2 INTRODUCTION

The configuration types to which CAST is applicable are symmetrical
configurations of five or fewer, synchronized computers. The term symmetrical
is used here to indicate that no one of the computers is used in a supervisory
or executive mode. Each of the computers executes the same program in synchro-
nism with the other machines. The synchronism may be "loose," or tight,"
depending on the mechanization of the configuration, i.e., the configuration
may be one in which the fault-tolerance functions are implemented largely in
software, they may be implemented in a software-hardware combination; or they
may be implemented mostly in hardware. For all of these, the mechanisms for:
the obtaining of input data from the sensors; the error-detection process;
and the supplying of outputs to the actuators are considered to be part of
the configuration. Consideration of software reliability was not considered
to be within the purview of this study.

The architecture of fault-tolerant computing systems is heavily
influenced by the key requirements of reliability, maintenance intervals,
time for fault recovery, structure of the computations to be performed, and
cost or maximum aliocation of power, weight, and volume. The avionics applica-
tion of this study is characterized by the'f0110wing salient attributes:

1. Extreme Reliability Requirements, including "fail-safe"
capability - lives are endangered upon failure.

2. Short Inter-Maintenance Interval - flights seldom exceed 10
hours.

3. Short Fault-Recovery Time - on the order of milliseconds
to prevent degradation of control functions.

4. Moderate Computational Requirements - real-time control,
well within the capacity of candidate machines.

5. Ample Power, Weight and Yolume Allocations - a number of
redundant computers may be employed.

To meet the reliability requirements of the avionics application
it is necessary to attain a very high value of “coverage" in the computer
design. It has been shown, that coverage, defined as the conditional prob-
ability, given that a fault occurs, that the fault is properly detected

1-4

and the subsequent "recovery" is successful, is the most sensitive parameter
affecting the reliability of a fault-tolerant digital system. With imper-
fect coverage, addition of redundant units gives little increase in reliability.
For the aircraft application, coverage must closely approach unity in order
to meet the stringent reliability requirements.

As a consequence of the high coverage requirement, a preferred
approach to fault-tolerant computer configurations is massive redundancy.
That is, performing the same computations with several computers and
comparing their outputs in order to provide nearly perfect fault detection
and isolation. When this approach is coupled with a sound recovery algorithm,
high coverage is assured. This approach has obvious cost advantages if
off-the-shelf computers, with minimal internal modifications and external
supporting hardware, can be utilized. Not only can development costs be
saved, but also support software and test procedures can be procured with
the computers.

1.3 SYSTEM ORGANIZATION CONCEPTS

During the RCS study general models and specific examples of
fault-tolerant computer configurations which are appropriate for implemen-
tation using "whole" computer massive redundance were formulated. These
models are sufficiently general to serve as the basis for discussion of
various redundancy options and reliability enhancement techniques. The
more promising options for each configuration were modeled analytically and
simulated to determine their effectiveness.

Three general categories of configurations utilizing "whole"
computer redundancy were formulated. The first, termed the mostly-software
approach, utilizes software for fault detection, voting, recovery and
synchronization. External hardware is held to a minimum. The second, the
hardware-aided software approach, shares fault detection and recovery between
software and external hardware which supplies fault detection and voting.

The third, the mostly-hardware approach, utilizes hardware to perform
fault ‘detection and recovery with the goal of minimizing the amount of
special software required for fault-tolerance. These categories of con-
figurations were examined in detail during the study.

1-5

1.3.1 "Mostly" - Software Configurations

The salient feature of "mostly" software (MSW) configurations is
that external hardware is held to a minimum. Comparison of outputs for
fault-detection and isolation is carried out by software. The interconnect-
ing and synchronization techniques, as well as techniques for fault detection.
and recovery are quite similar for configurations of three or more computers.
And thus a general model is presented which is inclusive of systems with
three, four and five computers. ‘

The simplest fault response is to ignore transients and for the
agreeing machines to ignore the subsequent outputs of the machines;which
disagree. However, since transient correction is essential in meeting the
stringent reliability requirements of the avionics application, it was
necessary to examine more sophisticated recovery algorithms.

The recovery algorithms must respond to the following three

fault conditions.
1. Permanent Fault - In the case of a permanent fault a

transient recovery attempt will be unsuccessful and it

is necessary to recognize this condition, typically by
repeated disagreements, and terminate attempts at
transient recovery. The subsequent outputs of the machine
are ignored.

2. Transient Fault -- Program Undamaged - There exist a

set of transient faults which can be corrected by one

of two simple procedures. One of these recovery techni-
ques, using segmented programs, is designated "rollahead”.
The second of these recovery techniques is called "roll-
back."

3. Transient Faults -- Program Damaged - Transient faults

which result in damage to instructions or constants stored
in memory, cannot be corrected by roltback, restart, or
rollahead techniques. Correction of these fault-effects
requires reloading memory, a process which results in a
much longer recovery time.

1-6

To effect transient recovery* a mechanism must exist for trans-
ferring correct information to the memory of the damaged computer. A salient
feature of the mostly-software configuration is that there is no hardware
mechanism by which agreeing computers can take control of the disagreeing
machine to force rollahead, update memories; etc. Thus even faulty computers
must have a 1imited degree of autonomy and, in order to provide transient
recovery, it was assumed that transient-damaged computers must maintain a
small interrupt handling routine in order to correct this class of faults.

If memory protection (addressing interlocks) and NDRO technology
is employed, a majority of transient faults will be rollahead or rollback
correctable. However, unless ROM is employed for instructions and constants,
there remains a probability of transients which require memory copy techniques
for correction. Thus rollahead techniques should be backed up with the
capability of copying memory contents to provide adequate coverage. A
typical hybrid transient correction approach would be (1) attempt rollahead,
then if a disagreement recurs, (2) attempt memory copy, and if fault still
persists, (3) consider the computer to contain a permanent fault.

The 1/0 structure of the mostly-software configurations must provide:

1. Communication with sensors and activators;
Masking of faulty computers;

3. Precisely timed events from commands from computers
which may be unsynchronized by a number of microseconds;

4. Redundancy and single-point-failure protection within
the I/0 structure.

Avionics systems typically contain sensors and actuators at
widely separated locations. The recent trend has been to empioy highly
multiplexed 1/0 on order to reduce weight and complexity associated with
cabling. Thus bus models were assumed in the analysis of I/0 structures.

It was assumed that two or more redundant busses are employed with a
number of redundant interfaces. Two types of bus structure were considered.

*

Transient recovery is defined as a recovery effected by the subsystem such
that the number of properly operating computers and their identities before
the fault occurrence and following the recovery are the same.

1-7

The first utilizes a bus dedicated to each of the computers with synchroni-
zation and voting performed in the peripheral units. The second treats

the redundant bus structure as an integral unit in which voting, synchroni-
zation, and bus redundancy management is carried out by a special bus con-
troller. In this case, individual busses and peripheral devices are not
dedicated to any specific computer.

1.3.2 Hardware - Aided Software Configurations {HASW)

| Hardware-aided configurations are characterized by the use of
external hardware for fault-detection and synchronization. The goals of
this approach are to (1) increase speed of computation and simplify software

by performing the task of comparing state vectors and outputs in hardware,
and (2) to allow the use of off-the-shelf computers with minimal 1/0 facilities.

The set of N computers is connected to a set of I/0 busses through a
special External Hardware Interface. This interface may be a single, massively-
redundant structure or a set of identical modules dedicated to either individual
computers or busses. The non-redundant building-block element of the external
hardware interface is designated the External Electronics Module (EEM). The
EEM accepts and buffers outputs from the computers, synchronizes the machines,
provides voting for outputs, provides for inter-computer communications, and
buffers returning inputs.

In order to effect transient recovery, a communication path must
be established such that the agreeing computers can enter data into the
memory of the faulty machine and command its restart. An adaptive voting
capability is utilized within the EEM to allow this intercommunication.
Transient recovery algorithms are similar to those used in the MSW configura-
tions.

System failure occurs in the HASW configurations when all but
two computers have failed and one of the remaining computers suffers either
an uncorrectable transient or a permanent failure. When two computers remain
functional, this condition is designated the Residual Duplex Configuration.
Techniques for recovery from failures in the residual dupTex configuration
and continuing computation with a single simplex computer were developed
during the study.

1-8

1.3.3 Mostly-Hardware Configurations

Mostly-hardware configurations are structured in such a way as
to minimize the amount of software required to support fault detection and
recovery. Table 1.3-I indicates the additional supporting software functions
employed in software, hardware-aided and mostly-hardware configurations.

Mostly- Hardware-Aided Mostly-
Software Software Hardware
Fault Detection by Comparison X
Synchronization X
Transient Recovery X X
Recording and Masking Perma- X X

nently Faulty Modules

TABLE 1.3-1 SOFTWARE OVERHEAD OF FAULT-TOLERANT
CONFIGURATIONS

The special software features associated with hardware-aided con-
figurations are:

I. Rollback/Rollahead structured programs.

2. Identifying recurring faults and the decision to employ
rollahead, memory copy, or classify a computer as permanently
faulty.

3. Control of data transfers for rollahead and memory copy.
Disabling (fault response) faulty machines.

Diagnostic programs for recovery when only two computers
remain functional.

6. A "warm" restart capability. A restart point at which
computation can be resumed with a minimum of variables
required for initialization. (Employed to minimize
downtime for transfer of variables at the end of a
memory copy.)

1-9

Mostly-hardware configurations perform the functions associated
with the previously discussed hardware-aided software configurations along
with implementing one or more of the above functions in hardware.

The principal difference® between the mostly hardware and hardware-
aided software configurations is that in the former the system state infor-
mation and recovery decision mechanism resides in a central "hard core".

1.4 EXECUTIVE STRUCTURE

Four design goals were established for the executive., These
goals specify general guidelines for the executive design as well as in-
dicating a particular application in which the executive could be used.
These goé1s are to design an executive which:

1. Can be readily adapted as an executive model for all
RCS configurations under consideration.

2. Is general enough to support any reasonably foreseeable
avionics application.

3. Makes clearly visible all the features required to
support a digital flight control application.

4. Makes available the necessary parameters for configuration
evaluations.

Since this study is directed toward multicomputer systems rather
than encompassing multiprocessors, a single executive can be designed for
use in each of the computers of the configuration. Thus, the first design
goal ensures that the executive which is designed can be used in all computers
of all configurations being considered, adapted as required by the configuration.

The computational environment imposed by air transport applications
is such that the majority of computations must be performed periodically, al-
though the computations performed will vary with the phase of the flight and
the mode(s) used. Thus the computational requirement imposed by the avionics
environments in which the computer systems being considered will operate
involves primarily periodic, cyclical tasks of varying complexity, rate, and

1-10

duration. The procesSing of occasional aperiodic tasks is also required. The
executive has been designed to meet both of these requirements and thus be
generally applicable to all avionics applications.

The executive skeleton consists of four distinct modules, each
providing one of the four basic facilities required in an executive for an
avionics computer. The four modules are the scheduler, the input-output
“driver, the interrupt processor, and the machine error handler.

The choice of a scheduling mechanism for an executive is the
single most important decision in the design. The selection of the scheduling
mechanism affects other modules in various degrees. For the avionics applica-
tion, there exists a complete spectrum of executive scheduling mechanisms
ranging from totally synchronous to constrained asynchronous.

.The scheduling mechanisms considered can be differentiated by the

following three characteristics:
1. Fixed vs variable processing time intervalss
2. Fixed vs variable task execution order;
3. Polled vs interrupt-driven aperiodic event registration.-

The synchronous executive, while limited in terms of flexibility and
growth, is conceptually very simple and its behavior is completely predictable.
The synchronous mechanism utitizes fixed time intervals, fixed execution order,
and polled aperiodic event registration. The constrained-asynchronous mechanism
is the most flexible scheduling mechanism usable for an avionics application.
The constrained-asynchronous executive schedules tasks on a demand basis. It
thus provides a more flexible structure which permits growth to be achieved
more easily. This mechanism utilizes variable processing intervals, variable
task execution order, and interrupt registration of aperiodic events (even
during periodic processing). There are a number of intermediate designs which
utilize various combinations of the above approaches.

Thus it can be seen that the scheduling mechanisms considered range

from the synchronous in which everything is fixed to the constrained asynchronous

where everything is variable. The synchronous mechanism is the easiest to
verify because everything is fixed. As more asynchronism is introduced, veri-
fication becomes more and more difficult because of more and more variability.

1-11

The asynchronous mechanism, in which almost everything is variable, can never
be totally verified because the number of combinations of events is very large.
A1l that can be done is to test all branches in a reasonable number of ways.

The choice of an executive scheduling mechanism is made on the basis
of the environment, the machine capabilities, and the applications programs
requirements. Once the choice of an executive scheduling mechanism is made,
the other portions of the executive can be considered. In the HASW configura-

tions this information and contrcl mechanism is distributed and replicated
within the software of the individual computers. The tradeoff between the two

implementation types is largely a matter of cost.

Implementation cost in the mostly hardware case includes not only
augmentation of the EEM units, but also a mechanism for protecting against
and correcting transient errors in the augmented EEMs. A process of voting
on all internal states (NMR synchronization) is required as well as a well-
defined AEEM restart in case of information loss. To protect against tran-
sients it is advisable that the AEEM control states be maintained in non-
volatile storage. Thus the augmented EEM is considerably more complex than
the HASW EEM without augmentation.

1-12

1.5 MEASURES OF FAULT-TOLERANCE

Reliability theory defines the reliability of a system as the prob-

ability of correct operation up to the "missjon time", T, given that the system

was operating correctly at the mission starting time. The work on measures
of fault-tolerance applicable to an RCS is based on the fact that computer
systems are a special case among all physical systems because in their case
"correct operation" means the correct execution of a set of programs, rather
than the continued functioning of a set of components of the system.

The following four criteria form an operational definition of
"correct execution of a set of programs:"

1. The program and their data are not altered or halted
by faults;

2. The results of operations do not contain fault-caused
errors;

3. The execution time of each program does not exceed a
specified Timit;

4. The storage capacity that is available for each program
remains above a specified minimum value.

There are three distinct quantitative measures that can be applied
to measure the fault-tolerance of a computer system. They are:

1. The Discrete Fault Tolerance d
2. The Reliability R(t)
3. The Survivability S(t)

The discrete fault tolerance (DFT) d is a deterministic measure
that specifies how many faults of a given class can be tolerated by a computer
system or by a module of the system. The remaining two measures - reliability
R(t) and survivability S(t) - are probabilistic measures that predict the

probability of the system continuing its correct operation over a specified
time interval.

DFT is defined as the ability of a Module Set M to operate correctly
for at least d faults within the Module Set. It is important to note that

1-13

DFT is not a function of time, i.e., the probability of continued correct
operation is stated to be unity as long as not more than d faults from the
fault set occur within the module set M,

The reliability R(t) also refers to a set F of permanent faults that
can occur in the hardware module set M. It is defined as the probability that
the set M will not experience a disabling hardware failure during a specified
"mission time" interval O0<t<T.

It is known from experience that coinputer systems are also subject
to transient faults, which can terminate the correct execution of a set of
programs without causing a disabling hardware failure in the module set Mi'
Our goal was to incorporate the survival probability with respect to the
occurrence of transient faults into one probabilistic measure of fault-
tolerance that also contains the reliability R{t). This measure js called
the survivability S(t) of the module set Mi'

Previous work has established that three fault-tolerance activities
must be successfully executed before the system returns to its functional
state after a fault event. It was found convenient to partition the probability
of successful system response to a fault into three components:

1. Detectability, denoted by u and defined as the probability
that fault is detected, given that it occurs;

2. Diagnostibility, denoted by v and defined as the probability
that the faulty module is correctly identified, given that
the fault has been detected;

3. Recoverability, denoted by w and defined as the probability
that the operational state is successfully re-established,
given that the fault has been located.

Thus the survivability S{t) is seen to be an overall measure of
fault-tolerance of a computer system, while detectability, diagnostibility,
and recoverability give detailed insight into the system behavior and can be
used for more precise specification of the fault-tolerance desired in a computer
system.

ANALYTIC MODELING

The analytic modeling effort was directed toward the specific
inclusion of transient faults and the inclusion by use of parameters, of
the software structure and the system failure criteria.

The problem was approached by preparing state diagrams representing
the fault/recovery status of the system. Transient faults were assumed to
arrive at an average rate 1 which is constant over the life of the system.
Similarly, based on physical reasoning and mathematical tractability, an
exponential density function was chosen to represent transient duration.

The three-stage transient recovery sequence, consisting of detection,
- recovery-start delay, and recovery, was formulated and the necessary parameters
defined. The concept of imperfect detection was formalized using a probability
density function of the detection time. An jmportant concept, that of tran-
sient leakage, was formulated and defined. Transient leakage, s is the
probability that a transient fault is interpreted as a permanent.

The modeling of specific computer systems was begun by considering
an enhanced TMR configuration. An enhanced TMR systems possesses the capability
of recovering from a transient fault. Following the obtaining of the results
for the enhanced TMR system, the work was extended to N computers, first
considering the case involving a linear degradation of the system (i.e. 5
computers to 4 computers to 3, etc.), and then formulating the more general
case where an N-computer system can go directly to the system failure state.

A recursive expression for the survivability of an N-computer configuration

was developed and then, by mathematical induction, it was shown that the
survivability can be expressed as a linear combination of exponential functions.
An iterative expression was then developed for determining the coefficients

for the linear combination.

The final aspect of the analytic modeling was the formulation of
a model using the Markov chain analysis method. By assuming that state transi-
tions occur continuously, it was possible to develop a vector differential
equation representing the system and obtain an expression for the state
probabilities at time t. As was to be expected, the results agreed with
those obtained earlier. However, they provide the basis for a set of simply-
formulated computer programs which are useful in obtaining numerical results.

1-15

1.7 SIMULATION

. The function of the simulator developed during this contract is
to produce: 1) parameters for use in analytic models of RCS; 2) the
fault-tolerance effectiveness of each of a wide variety of RCS configurations;
and 3) the behavior of a configuration in various fault environments.

The general organization of the simulator was formulated so that
the end-product would be versatile and flexible. An efficient simulation
was developed by designing a "fault-driven" simulator, rather than one
that simulates the continuous operation of the system. The simulator was
written in FORTRAN IV and currently runs on a CDC-6600 computer.

The approach taken to the formulation of the simulator is similar
to that utilized in the analytic modeling in that a state diagram is used
to describe the programs requirements. A simplified state diagram is shown
in Figure 1.7-1.

The simulator program is structured to simulate the detection of
faults within a computer system and the computer system's successful/unsuccess-
ful recovery actions taken in response to the detected faults. Each simulated
mission is assigned a mission time. A simulation run consists of the repeti-
tive continued simulation of a designated number of missions (each with the
same mission time). As stated earlier the simulation is fault-driven. Nothing

happens in the simulator unti) a fault occurs. This is very important in
terms of simulator efficiency. The computer time spent in one run is
roughly proportional to the number of faults and not to the simulated mission
time.

A good measure of the detail included in a system simulation is the
number of parameters that must be specified for each run. It can be seen from
Table 1.7-1 that the RCS simulator is very detailed. The outputs produced by
the simulator are listed in Table 1.7-11. As can be seen from this table,
outputs are provided to the user that give detailed insight into the system
behavior.

LL-1

{ i
NORMAL
MULTIPLEX |w—»{ ROLLAHEAD SYSTEM
{N23) RESTART
OPERATION
A
! Y i
'NTRg‘F"fT'ON DUPLEX MEMORY SYSTEM
- ———= OPERATION |[=—r]
SPARE COPY FAILURE
A f]
ROLLBACK SIMPLEX ROLLBACK
IN | DIAGNOSIS L .1 OPERATION |=—n IN
DUPLEX SIMPLEX

FIGURE 1.7-1 SIMULATOR STATE DIAGRAM

TABLE 1.7-1 LIST OF RCS SIMULATOR INPUTS

NUMBER OF SIMULATED MISSIONS

MISSION DEPENDENT PARAMETER
Mission Time

MACHINE DEPENDENT PARAMETERS

Permanent Failure Rates

BITE Detection Probability of a CPU Fault
BITE Detection Probability of a Memory Fault
Self-Test Program Efficiency

Self-Test Program Duration

CONFIGURATION-DEPENDENT PARAMETERS

Number of Computers

Number of Spares

Dedicated/Non-Dedicated EEMs (External Electronic Modules)

Probability that an EEM Fault Hits the Bus

Number of Non-Dedicated EEMs

Dedicated/Non-Dedicated Busses

Number of External Devices

Coverage and Relative Failure Rate of each Device and
of the Busses

Applicable Recovery Algorithms

Recovery Algorithm Characteristics

Duration

Unacceptable Recurrence Interval

Maximum Number of Rollbacks

Program Integrity

Memory-Copy Efficacy

SCHEDULING PARAMETERS

Iteration Period

Time Between Comparisons

Major and Minor Cycle Durations
Asynchronous/Synchronous Mechanism

ENVIRONMENT DEPENDENT PARAMETERS

Transient Failure Rates
Transient Failure Duration

TABLE 1.7-11 RCS SIMULATOR QUTPUTS

NUMBER OF SYSTEM FAILURES

CAUSES OF SYSTEM FAILURES

Excessive-Length Recovery
Non-Isolated Faults
Simplex Mode Failures

EEM Failures

1/0 and Bus Failures

NUMBER OF SWITCHES TO

Quadruplex
-. Triplex
- Duplex

- Simplex
TRANSIENT COVERAGES IN MULTIPLEX, DUPLEX, SIMPLEX
DIAGNOSTIBILITY IN DUPLEX
PROPORTION OF CATASTROPHIC FAULTS

NUMBER OF MISSED ITERATIONS

1.8 COMBINED ANALYTIC-SIMULATIVE TECHNIQUE

The analytic modeling approach described in Section 1.6 and the
simulation technique described in Section 1.7 each has its strengths and
limitations. However when these two system evaluation approaches are
combined, and supplemented by some engineering analysis, a very powerful
technique results.

This Complementary Analytic-Simulative Technique (CAST)} evolved

as it became evident that neither analysis nor cimulation alone could satisfy

L

all the RCS evaluation requirements. Analytic modeling provides flexibility
and rapid, economical data-generation. However the solutions for some configu-
rations are very cumbersome and in certain cases the mathematical model formu-
lated is intractabie. Simulation permits computer system details to be in-
cluded easily, but data generation is slow and expensive. CAST permits the
user to obtain the best features of both analytic modeling and simulation.

The RCS engineering analysis is performed to provide six categories
of information to the analytic modeling and the simulation. These information
categories are:

1. Configuration Particulars

2. Fault Environment

3. System Failure Criteria

4. Software Structure

5. Recovery Features

6. Test Features

The results produced by the simulator are:
1. Permanent-fault coverage

2. Transient-fault coverage

Detectability

= [78)
-’ L]

Diagnostibility

5. Recoverability

1-20

1.9 RECOMMENDATIONS

Based on the work summarized here and repotted in detail in
Sections 2 through 9, the following two actions are recommended.

1.

Apply CAST to a specific configuration of interest.

The combined analytic-simulative technique should be
applied to a specific aircraft or spacecréft applica-

tion that requires a highly reliable computing capability.
Preferably this would be an application that has progressed
far enough in the preliminary design stage so that the
software structure has been formulated, application pro-
gram size and execution times have been estimated, sub-
system failure criteria have been postulated, and specific
sets of sensors and actuators have been selected. Applica-
tion of CAST to a specific system will illustrate its
utility.

Introduce additional complexity into the analytic model
in order to reduce the cost of the necessary simulation
runs. The complexities to be considered are:

a. Spare computers:

b. Dedicated busses;

¢. Recovery-procedures complexity;
d. Explicit failure criteria;

e. Software structure; and

f. Burst-fault environment.

1-21

THIS PAGE INTENTIONALLY LEFT BLANK

1-22

SYSTEM ORGANIZATION CONCEPTS

The architecture of fault-tolerant computing systems is heavily
influenced by several key requirements of their application. Among these
are: 1) reliability, 2) maintenance intervals, 3) time for fault recovery,
4) structure of the computations to be performed, and 5) cost or maximum
allocation of power, weight, and volume. The avionics application of this
.study is characterized by the following salient attributes:

1. Extreme Reliability Requirements, including "fail-safe"
capability - lives are endangered upon failure.

2. Short Inter-Maintenance Interval - flights seldom exceed
10 hours.

3. Short Fault Recovery Time - on the order of milliseconds
to prevent degradation of control functions.

4, Moderate Computational Requirements - real-time control,
well within the capacity of candidate machines.

5.. Ample Power, Weight and Volume Allocations - a number of
redundant computers may be employed.

In order to meet the reliability requirements of the avionics appli-
cation it is necessary to attain a very high value of "coverage" in the computer
design. It has been shown, both by analytic means and by simulation, that the
most sensitive parameter affecting the reliability of a fault-tolerant digital

- system is “coverage"; defined as the conditional probability, given that a
fault occurs, that the fault is properly detected and the subseguent “"recovery"
is successful. [BOUR 69]. In many cases it can be shown that increasing coverage
by 1% can improve the reliability of a fault-tolerant computer to a greater
extent than using an additional spare computer. Conversely, with imperfect
coverage, addition of redundant (spare units) gives little increase in reliability
For the aircraft application, coverage must closely approach unity in order to
meet the stringent reliability requirements.

As a consequence of the high coverage requirement, a preferred approach
to fault-tolerant computer configurations is massive redundancy. That is,
operating several computers to perform the same computations, and comparing

2-1

their outputs in order to provide nearly perfect fault detection and isolation.
When this approach is coupled with a sound recovery algorithm, high coverage

is assured. This approach has obvious cost advantages if off-the-shelf compu-
ters, with minimal internal modifications and external supporting hardware, can
be utilized. Not only can development costs be saved, but also support software
and test procedures can be procured with the computers.

The purpose of this section is to provide general models and specific
examples of fault-tolerant computer configurations which are appropriate for
implementation using "whole" computer massive redundancy. The models are
intended to be sufficiently general to serve as a basis for discussion of
redundancy options and reliability enhancement téchniques. The more promising
options for each configuration will be modeled analytically and through
simulation to determine their effectiveness.

Under the constraints of 1) 1ittle or no modifications to the off-
the-shelf computer elements, and 2) application of redundancy at the "whole"
computer level, there are three key interfaces to the digital computer for its
implementation into a redundant configuration. These are: 1) I/0 interfaces
inctuding interrupts and AGE, 2) software, and 3) synchronization (which,
though not an explicit physical interface, bears heavily upon the design of
the configuration).

There are three general categories of configurations utilizing
"whole" computer redundancy. The mostly-software approach utilizes software
for fault detection, voting, recovery and synchronization. External hardware
is held to a minimum. The hardware/software approach shares fault detection
and recovery between software and external hardware which supplies fault detec-
tion and voting. The mostly-hardware approach utilizes hardware to perform
fault detection and recovery with the goal of minimizing the amount of special
software required for fault-tolerance. The following sub-sections are directed
toward an examination of these categories of configurations.

2.1 "MOSTLY"-SOFTWARE REDUNDANT CONFIGURATION (MSW)

The salient feature of mostly-software configurations is
that external hardware is held to a minimum. Comparison of outputs for fault-
detection and isolation is carried out by software. The interconnecting and
synchronization techniques, as well as techniques for fault detection and

2.2

recovery are quife similar for configurations of three or more computers. And
thus a general model is presented which is inciusive of systems with three,
four and five computers.

Mostly software configurations are characterized by 1) inter-computer
communications utilized for fault-detection, transient recovery, and synchroni-
zation, and 2) a redundant I/0 structure which can convey "correct" information
to and from peripheral devices in the presence of computer or I/0 faults. These
two characteristics tend to define the MSW redundant configurations which are
described below:

2.1.1 Internal Communications for Fault Detectioh and Transient Recovery

The internal cross-connections associated with software redundant con-
figurations are shown in Figure 2.1-1. Each computer generates data and control
outputs which are made available to the other N-1 machines. It is assumed that
synchronization is carried out by software and that exactly-synchronized clocks
for data transfers cannot be guaranteed. (The candidate computers employ
asynchronous memory cycles, an attribute which does not allow synchronizing
clocks without internal hardware modifications). The following is a description
 of the two sets of internal cross-connections. ‘

1. Data Transfer Paths - It is necessary to transfer outputs,
and state variables generated within program segments,

between computers for checking and voting by software,
The data paths employed can be implemented in one of
several fashions, each of which can tolerate the lack of
clock synchronization:

a. Parallel {Held) - Each computer's output remains
until sampled by other computers.

b. Serdial or Parallel (Transmitted) - Output is sent
to latching registers within the receiving computers
for synchronization.

c. DMA transfer facilities between computers under
control of the outputting modules. Software
synchronization is only necessary for initiation
{or completion) of a block transfer. Individual

2-3

COMPUTER
1

2

B E—
—
COMPUTER :I-o
—
¢

TWO SETS OF CONNECTI(hS

(1) DATA PATHS

COMPUTER _...__L
(2) CONTROL SIGNALS

3

—3
.
®
®
’ "
COMPUTER [
. -

FIGURE 2.1-1 MSW INTERNAL CROSS-CONNECTIONS

2-4

word transfers are transparent to the software.
(This approach is expensive in hardware but offers
the more rapid comparison/voting process).

2. Control Signals - It is necessary for each computer to
supply the other machines with control signals for
synchronization and fault recovery. Examples of control
signals are 1) output ready, 2) fault detected, etc.

An example of the comparison and synchronization process is given

in the following paragraphs.

2.1.1.1 Voting and Synchronization

The following description of voting and synchronization is centered
around the activities of properly functioning processors. It is assumed that
there is a set of ¥ processors, each programmed- to perform-an identical compu-
tation, loosely synchronized within a few instructions of each other. The
properly functioning computers comprise the subset ¥ and have stored internally
the identity of the working machines W and that of the.machines assumed to have
failed F. (w=wUF). A vote V&(W&F) is performed in each of the properly
functioning computers which provides: 1) a voted result v, or .an indication
of indeterminable output (such as when all inputs disagree), and 2) an indi-
cation of one or more disagreeing units di‘ A number of voting algorithms
are possible, e.g. NMR, hybrid, adaptive, etc..

A typical scenario of the voting and synchronization process is in-
dicated in Figure 2.1-2. When any properly functioning computer reaches a
point in the program where comparison of results is required, it transfers
its values to the other computers and waits for one of two events:

1. The other working computers complete the transfer
indicated by their Output Ready {OR) levels or,

2. A time-out overflow occurs.

In either case a vote is taken on the transferred information in all the
properly functioning computers in the set w. If all the computers agree with
the voted result, computations continue else a corrective action is taken.
This approach corresponds to the fault exit in Figure 2.1-2.

2-5

COMPUTER i
REACHES COMPARISON
POINT IN PROGRAM

COMPUTER i TRANSFERS
INFORMATION TO BUFFERS

I THE OTHER COMDLITE DG
[B &) TV i W REIN v_ll Tf 1 e I

b IR Sy’ L

SET TIME-OUT COUNTER

ALL COMPUTERS \

IN ¥ INDICATE

TIME-OQUT
COMPLETION OF TRANS- COUNTER
FER BEFORE TIME-OUT OVERFLOW
COUNTER OVERFLOW

T /

PERFORM VOTE
v, (W,F)

4

ALL COMPUTERS NO

HANDLER

YES ‘l PROGRAM
CONTINUE
PROGRAM

FIGURE 2.1-2 SYNCHRONIZATION AND VOTING SCENARIO

2-6

The simplest fault response is to ignore transients and for the
agreeing machines to delete the machines which disagree from the set ¥ and
to ignore their subsequent outputs. However, since transient correction is
essential in meeting the stringent reliability requirements of the avionics
application, it is necessary to examine more sophisticated recovery algorithms.

2.1.1.2 Transient Recovery Techniques

The condition which causes a computer in the set w to be in disagree-
ment with the other machines is either 1) an erroneous computation, or 2) the
“disagreeing machine has gotten out of step with the others. It is useful to
classify the causes of this condition into the following three categories and
list the implications of each on the transient recovery pfocess:

1. Permanent Fault - In the case of a permanent fault a

transient recovery attempt will be unsuccessful and it
is necessary to recognize this condition, typically by
repeated disagreements, and‘terminate attempts at
transient recovery. The machine is reclassified from
the set ¥ to the set 7 and its subsequent outputs are
ignored.

2. Transient Fault -- Program Undamaged - There exist a set
of transient faults which can be corrected by either one of

two simple procedures, program rollahead and program rollback.
For both of these procedures, the program is segmented and
associated with each segment is a set of global variables
designated the State Vector. The state vector contains
necessary and sufficient input data to properly execute the

associated program segment. Furthermore the state vector is
not modified by its associated program segment (e.g. call by
va1ue) such that the program segment can be re-started. During
correct computation of the Nth program segment, the state

variables for the next (N+Tth) segment are generated {ROHR 73).

The first technique, designated “ro1lahead"; takes advan-
tage of one or more "correct” machines. When a fault occurs
in a cemputer, the next state vector (including the location
counter) of the "¢orrect" machines is loaded into its memory

2-7

at the end of the program segment in which the fault occurred.
Since the corrected state vector corresponds to the variables
which are neéessary to start the next program segment, the
faulty machine can be corrected without repeating the segment
in which the fault occurred. The desired outputs are available
from the correct machines.

The second of these recovery techniques is called "rollback”.
In this case, if the computers disagree upon output or compari-
son of information the current program segment is re-started.
If the state vector and program have not been damaged, the
program segment will be executed correctly after the restart.

While program rollahead takes place nearly instantaneously,
program rollback results in a delay required to re-compute a
transient-damaged program segment. However, since rollback
does not require a transfer of information from “correct"
computers, it can be utilized in. duplex configurations where
the "correct" computer cannot be immediately identified. Thus
rollahead is the preferred approach to correction of this class
of transient faults when three or more computers are functional,
Rollback is required in the residual duplex condition where
only two machines remain functional or when only one computer
is working.

3. Transient Faults -- Program Damaged - Transient faults
which result in damage to instructions or constants
stored in memory, cannot be corrected by rollback, restart,

or rollahead techniques. Correction of these faults requires
reloading memory, a process which results in a much longer
recovery time.

Memory address protection and NDRO memory are two RETs employed to
prevent transients of type (3) above, as well as to reduce the total number of
memory transients. The next section explores the implementation of transient
recovery techniques in software redundant configurations.

2.17.1.3 Transient Recovery - Implementation

In order to effect transient recovery a mechanism must exist for
transferring correct information to the memory of the damaged compUter. A
satient feature of the software configuration is that there is no hardware
mechanism by which agreeing computers can take control of the disagreeing
machine to force rollahead, update memories, etc. Thus even faulty computers
must have a limited degree of autonomy and, in order to provide transient
recovery, it is assumed that transient-damaged computers must maintain a small

interrupt handling routine in order to correct this class of faultsn

Two examples are given below of transient correction mechanisms
employed in the software-redundant configuration. Each requires three principal

actions:

1. The disagreeing computer must be notified that it is out of
step. It can ascertain this locally by performing a test at
the occurrence of each real-time interrupt (RTI), or can be
notified via interrupts from the other computers in W.

2. The "good" computers must effect transfer of correction

information.
3. The faulty computer must load this information and

re-synchronize with the other computers.

It is assumed that each computer has capability of loading compari-
son values into dedicated buffers in the other computers independent of the
program in those machines (e.g. DMA).

Program Rollahead

"Instantaneous" transient recovery can be achieved if segmented
programs are employed and rollahead is implemented. At the end of each
segment of program, the state variables (those global variables utilized by
subsequent program‘segments) are exchanged and compared in the various computers.
If a computer in W suffers a transient fault during the program segment, which
does not damage instructions or constants, it can utilize the state vector from
the other machines and continue with the next program segment. The address of
the next segment must be included within the state vector to indicate the point
at which the faulty machine should commence execution.

- 2-9

The principal problem of the rollahead implementation is notification

of the faulty machine so that it can utilize the corrected state vector and
start the next program segment in step with the other machines. Three cases

exist:

If the machine has only data damage but is still in step
with the other machines, the software vote Ni(w,F) will
indicate its disagreement and the program can automatically
choose the state vector sent from another machine in W and
continue.

If the machine is out of step and attempts a comparison before
the other machines, this condition can be recognized and a
wait initiated for access to the state vector from the other
computers and a subsequent rollahead.

If the machine is out of step and does not perform a comparison
with the others of state vectors, then it must be alerted to
this fact in order to execute the rollahead. This can be done

utilizing "fault detected" signals as intekrupts in the
following fashion.

Each computer generates a "fault detected" (FD) signal
which is received as an interrupt by the other computers.
This interrupt is permanently masked (by all computers in
¥) from computers designated as failed (F).

Prior to performing a comparison, each computer masks out
the FD interrupts. If after completion of the transfer, one
computer fails to respond with an output ready (OR) signal,
the other computers send the FD signal, thus notifying the
computer which is out of step. The validity of these inter-
rupts can be verified by the interrupted computer by checking
for several OR signals.

Thus the idea of this approach is:

a. A computer not in or near the process of comparison
enables FD interrupts from the other machines.

b. If the other machines perform a comparison without
activity from one or more machines their FD interrupts

are raised.

¢. Erroneous FD interrupts are identified and masked
by verification of output-ready signals.

A machine which is alerted as to being out of step can utilize the
state vector from the other computers to perform a rollahead.

Memory Copy
At the occurrence of the RTI, the computers in set W, check the

results sent for comparison during the Tast minor cycle. If one of the compu-

ters has gotten out of step due to a transient, it will then recognize that its
comparison data differs from that of the other good machines. Under this condi-
tion the faulty computer enters the UPDATE mode. (It is important that ROM or
memory-protect hardware be employed to preserve the integrity of this RTI-driven
program). '

| Upon recognizing a computer from the set W which is in disagreement,
‘the remaining (agreeing) computers transfer programs, constants, and .

that variable data necessary to restart computations to the disagreeing computer.
Two characteristics of this transfer are listed below:

1. Since it is necessary to maintain normal computations,
the transfer of programs and fixed constants takes place
at a low duty cyc]e and thus recovery takes on the order
of seconds.

2. Computations must be stopped during the transfer of that
variable information required to restart the disagreeing

computer. The UPDATE program is flagged by receipt of this
variable data and it resumes normal computation at the next

RTI if the transient was corrected.

1f the disagreeing computer continues to produce erroneous results,
after the transient recovery attempt the remaining computers in set w, reclassify
the machine as permanently faulty and ignore its outputs.

2.1.1.4 Utilization of Transient Recovery Techniques

If memory protection (addressing interlocks) and NDRO technology is
employed, a majority of transient faults will be rollahead or rollback correc-
table. However, unless ROM is employed for instructions and constants, tran-
sients may cause memory-contents damage which require memory copy techniques for
correction. Thus rollahead techniques should be backed up with the capability
of copying memory contents to provide adequate coverage. A typical hybrid
transient correction approach wouid be 1) attempt rollahead, then if a disagree-
ment recurs, 2} attempt memory copy, and if fault still persists, 3) consider
the computer to contain a permanent fault, reclassify from ¥ to F and ignore
further outputs from that machine in comparisons.

The previous discussion was related to internal cross-connections
associated with the software redundant configurations. It is these connections
which are utilized for comparison of variables for fault detection, voting to
establish the correct value of information in the various machines, and data
transfer for transient correction. The next sub-section deals with various
redundant structures for 1/0.

2.1.2 Redundant I/0 Structures for Communications with Fault Masking

Beside the primary task of providing communication with peripheral
units, the 1/0 structure of the software redundant configurations must:

1. Provide masking of faulty computers.

2. Provide precisely timed events from commands from
computers which may be unsynchronized by a number
of microseconds.

3. Provide redundancy and single point failure protection
within the I/0 structure.

Avionics systems typically contain sensors and actuators at widely
separated locations. The recent trend has been to employ highly muitiplexed
1/0 in order to reduce weight and complexity associated with cabling. Thus
bus models will be employed in the following discussion of I/0 structures. It
js assumed that two or more redundant busses are employed with a number of redun-
dant interfaces. Two types of bus structure will be discussed. The first

2-12

utilizes a bus dedicated to each of the computers with synchronization and
voting performed in the peripheral units. The second will treat the redundant
bus structure as an integral unit in which voting, synchronization, and bus
redundancy management is carried out by a special bus controller. In this case,
individual busses and peripheral devices are not dedicated to any specific
computer.

2.1.2.1 Dedicated Busses

Figure 2.1-3 shows the connections employed in an I/0 configuration
with dedicated busses. Each bus may be bidirectional or employ a separate set
of return lines. Each bus is controlled by its associated computer and is only
synchronized within a few instruction times of the other busses. Two types of
1/0 modules may be attached to the bus 1) dedicated and 2) non-dedicated.

2.1.2.1.1 Dedicated Sensors

A set of identical sensors may be dedicated one per each bus line
and operate independently. This results in differing values being returned
to the various computers. And thus it is necessary to exchange input values
from a set of redundant sensors (using the interal cross-connections
described in the previous sections) between the computers in ¥ and to com-
pute a common value for use in subsequent computations so that the machines
will generate identical outputs and not appear faulty. This process of
computing a common value for the various sensors is a critical RET in the
utilization of sensor redundancy which must (1) exclude values from faulty
machines (eF), (2) exclude inputs from sensors previously determined as
faulty, and (3) use reasonableness checks, averaging, etc. to establish
a "best" sensor value for common utilization.

The use of dedicated sensors has the advantage of simplicity, but
also has several disadvantages:

1. The number of redundant sensors is constrained to
the number of computers, which prevents optimum
balance of redundancy for modules of differing re-
1iability. This approach is not applicable for con-
figurations of more than three computers due to the
requirement of excess redundancy in sensors.

2-13

S/A |

—e

C1
Co
4 i
s
[]
&
NON-DEDICATED DEDICATED
CN SENSORS/ACTUATORS SENSORS
FIGURE 2.1-3 DEDICATED BUSSES

2-14

2. If one computer fails, its associated sensors are
effectively disabled.

2.1.2.1.2 Non-Dedicated Sensors and Actuators

A non-dedicated sensor/actuator interface, provides communication
between all the computers and the redundant sensors and actuators. The bus
interface allows each of the computers to address any specific member of
a redundant set of sensors or actuators and the returning information is
coherent, i.e. the same number is returned to all computers. This differs
from the case of dedicated I/0 where each computer addresses a different
peripheral device within a redundant set and receives slightly different
information. Redundant sensor data is obtained by addressing several
redundant devices in sequence, '

Bus interfaces to non-dedicated sensors or actuators are moderately
complex since they have the following requirements:

1. The interface receives identical commands and data from
busses associated with properly functioning computers, and,
most Tikely, incorrect outputs from failed computers.

2. The agreeing outputs are not precisely synchronized but
will occur within a worst-case time interval at.

3. For commands which change the state of peripheral subsystems,
a vote must be provided in the interface to mask out faulty
commands. (A typical implementation is to respond only
to two or more identical commands, occurring on different
busses within the acceptance interval at).

4. Independent data streams must be supplied to each computer
upon receipt of a set of identical input-request commands. In
order to meet the timing réquirements of a number of candi-
date machines, information must be returned immediately upon
receipt of its request (i.e. each input transfer is
synchronized to the associatéd computer). Thus vofing'may
not be employed for information requésts_if the first
computer to make an 1/0 request cannot wait for subséquent
requests and voting.

2=18

5. The I/0 interface should supply identical data to all machines
making an information request within the acceptance interval
at. This can be accomplished by synchronization with the
RTI. (A1l status vectors and sensor measurements are latched
and only allowed to change upon occurrence of the RTI; all
programmed I/0 is constrained to occur between these changes).

Non-dedicated modules have several advantages indicated below:

1. Individual actuators within redundant sets reguire a
guarantee of correctness from the computer system before
executing a command. Thus the I/0 module voting capability

is necessary.

2. A computer failure does not disable non-dedicated sensors
and actuators.

Several disadvantages exist and are discussed in the following
paragraphs.

1. latching of information to guarantee identical sensor values
to the various machines is not inconsistent with the real-time
control application, but does represent a degree of added
complexity.

2. Cross checking of input information must still be performed,
or a faulty input from an I/0 module will appear as a computer
fault due to disagreeing results.

3. As indicated above, a non-dedicated I/0 interface is a
device of considerable complexity, but this complexity is
not significantly greater than that required by replicating
simplex bus interfaces as employed with dedicated devices.

2.1.2.2 Non-Dedicated Busses (Non—Dedicated Sensors)

A non-dedicated redundant bus structure can be treated as a self-
contained unit for conveying information between the computers and peripheral
devices. One or more busses carry identical information to and from the sensors
and actuators, and individual sensors are accessed within redundant sets. To
utilize redundancy, a set of identical sensors must be sampled sequentially and
a selection (or voting) process performed in software. Individual bus lines

2-16

-l

are not dedicated to any specific computer but, information may be obtained
from any of the computers by a process of switching or voting. A good first-
order approximation is to treat the non-dedicated bus structure as a series
term in the system reliability expressions (see Section 9).

Two options are possible for implementation of non-dedicated busses:

1. Switched Busses - Each of several busses can be connected
to any of the computers, in standby or massive redundant
configurations (see Figure 2.1-4). With standby redundancy,
only one bus is utilized, and the remaining busses serve as
spares. In the massive redundant case, the various busses
are connected to different computers, allowing voting and
error correction in the peripheral sensor and actuator

interfaces.

2. VYoted Outputs - Each bus output is derived as a vote of the
various computer outputs. As with switched outputs above, the
redundant busses can be employed in standby or massive redundant

configurations.

Switched busses require 1imited amounts of hardware and can employ
software synchronization. Thus switched-bus structures are discussed in this
section which treats mostly-software computer configurations, being consistent
with the requirement of minimum external hardware. Busses driven by voted
outputs are more complex, requiring a degree of hardware synchronization.
Redundant busses which include output voting are described in Section 2.2 which
considers hardware-aided computer configurations.

2.1.2.3° Non-Dedicated-Switched Busses

A non-dedicated switched bus configuration is shown in Figure 2.1-4.

fase 1 - Standby Redundancy

One computer is designated MASTER and the others are designated
auxiliary machines. A1l I/0 is initiated and carried out by the master
machine. Synchronization of the computers and transfer of input information,
as well as comparison of information prior to output is performéd using the
internal cross connections as described in 2.7.1.

The switching function, i.e. assignment of a bus to one of the
computers, is carried out in the following fashion. Each computer generates

2=17

INTERNAL CROSS

COMPUTER |jp=———1[/0-1
1 {1 L)
]
COMPUTER == »{/0-2
2
—
COMPUTER -t = /0-3
3
—
-
COMPUTER = | /0~-N
N —

1/0-1 =1

1/0-2 —=e>
i/C-3 ==

1/0-N=m

SWITCH

1/O-1 ~ato)
1/0-2]
|/0-3-(;-

1/0-N—]

SWITCH

| |

1/0-1=a]
1/0-2 2
l/0~3-l;'-

1/0-N]

SWITCH

Y

CONNECTIONS

]

PERIPHERAL

INTERFACE

FIGURE 2,1-4 NON-DEDICATED, SWITCHED BUS CONFIGURATION

Y

several signals to specify which switch (bus) is to be active, and which compu-
ter (master) is_to be connected. Voting is provided in the switch to select

the proper command when several computers disagree. (The vote performed in

the switches should be adaptive and can be implemented in such a way that the
switch only responds to computers in w, as defined by software voting algorithms.
This is a problem associated with specific implementations).

1. Fault Detection Detection of faults in the computers is
accomplished by comparison of variables using the internal

cross-connections as described in Section 2.71. Each computer
generates the information to be output and a cross-comparison
is made to verify proper computation. If all machines in ¥
agree, the master machine proceeds with the I/0 operation,
Faults in the bus may be detected using a) a wrap around check
at each RTI, or b) by utilizing error detecting codes appended
‘to words before transmission.)

2. Fault Correction In the case of a disagreement of the

computer designated master, when state vectors are compared
before output, the remaining computers in ¥ designate a new
master machine by commanding the active bus to switch to a
different computer. Transient correction techniques-are
applied to the disagreeing machine (rollback, rollahead,
memory-copy as described in Section 2.1) and if the disagreement
is not corrected the machine is deleted from the working
set w.

If bus failure is detected by a wrap-around or parity check,
the computers in ¥ activate a spare bus and continue
computation.

Case 2 - Multiple Identical Qutputs

A minor variation on Case 1 is to utilize all redundant busses to
convey I/0 information between the master machine and the peripheral sensors
and actuator interfaces. A vote can then be performed at the peripheral inter-
faces and at the computer input to correct input and ocutput information in the
presence of bus failures.

2-19

In both configurations (1 and 2) all I/0 is controlled by the master
machine offering the distinct advantage that the peripheral interfaces are not
required to synchronize multiple data streams. The standby redundant bus

structure further simplifies peripheral interfaces in that voting is not
required.

Case 3 - Multiple Computer Outputs

This configuration corresponds to the case of a set of active busses,
¢ at least three different computers. This approach ows correction
of computer and bus fault if voting is employed in the bus interface units.
Several computers must be designated master, and fault detection and recovery

algorithms become more complex.

2.1.3 Executive Program Considerations

The unique characteristics of the executive and applications pro-
grams running on MSW computer configurations will be considered in this and
the following section. Previous sections have considered the hardware
required for a "mostly" software redundant configuration as well as some of
the recovery strategies which are applicable. Here the executive augmenta-
tion which is required for the MSW computer configurations will be described
in enough detail to illustrate the feasibility of the approach.*

The executive augmentation which will be described is applicable to
any NMR or NMR-adaptive MSW computer configuration. With some further addi-
tional modifications, operation on a duplex configuration would be possible.

The three major augmentations to a standard or skeleton executive
are a voter module, intercomputer communication routines in the input/output
module, and memory relcad on the error handler module. The voter is a com-
pletely new module which does not appear in a skeleton executive. The inter-
computer communication routines and memory reload capability are also new,
but they are additions to existing modules, namely, input/output and error

handler, rather than new modules themselves. Each module will now be discussed
individually.

* .
_The general requirements and applicable executive structures are described
in Section 3.

2-20

2.1.3.1 Voter Module (Figure 2.1-5)

The voter module is the heart of the MSW computer configurations.
A1l comparisons of data and all decisions as to which computers are fault-
free are made in the voter module. When the voter module encounters a sus-
pected error in a computer which was previously considered to be fault-free,
the error handler is utilized to attempt to bring the computer back into the
working state.

The voter module can be used in two different ways, depending on
the hardware configuration in which it is used. If the bus structure is such
that bus voting is required, then the voter module does this. If the hardware
does the bus voting, then the voter is used only to compare program state
vectors at predetermined program segment points. For either type of voting,
the use of voter module is the same.

The voter assumes that the computers in the configuration are
numbered. An example of the numbering scheme for three computers is shown
in Figure 2.1-6. Each computer checks on the computer ahead of it to ensure
that it has received data from that computer. If a computer determines that
it needs to reload itself, it reloads from the computer behind it. The first
computer is assumed to follow the last computer to make the connection a
closed ring of computers.

The voter module is first activated when all data should have been
received. The voter first checks to see if all computers have sent data.
If not, a check is made to determine if data have been obtained from the next
computer in the ring. If not, a fault is tallied against the next computer.
If the fault count for the next computer has reached or exceeded a specified
1imit, n, then that computer is forcefully reloaded on the assumption that
it has failed and cannot recover. If data have been received from the next
computer, its fault tally is cleared to zero.

The justification for including the reload capability is the
recovery of a machine whose program or constants have been damaged by a
transient error. If a working computer has detected repeated errors or
missing responses in another computer, the memory of the faulty machine can

2-21

All Data
Received?

OTHER

e

OTHER +1

OTHER: n

RELOAD
(i) > i+t

Own Data
Correct

SELF

a———

SELF +1

Correct
Own Data

]

Advance
Masker
Computer
Number

Cnmgute r

Rt

]

Send New
_Masker
Computer
Nurnber to
Other
Computers

FIGURE 2.1-5

NO

All
Computers
Tried

Set Number
to Lowest
Computer
With Good

Data

Set
Switch

2-22

VOTER MODULE LOGIC

Send Data
(SEND)— to Other
Computers

Receive Data
(RECEIVE)——- From Other

Computers

Reload
(RELOA D Specified
Computer

Reloading Strategy

FIGURE 2.1-6 INPUT - OUTPUT LOGIC ~ ADDITIONS

2-23

be reloaded by the working machine. If errors persist, the faulty machine
has a permanent, hardware fault. If memory reloading restores the faulty
machine to working status, then memory damage had occurred and was repaired
by the reload.

The next step in the voting procedure is to compare the data which
are available. If all data agree, the self-error tally is cleared to zero
and the voting procedure is terminated. If all available data do not agree,
then further action is required. If the computer determines that its own
data are in disagreement with the data from other computers, it tallies an
error against itself and calls its error handler, indicating that its own
data do not agree with that of the other computers in the configuration,

It then corrects its own data and continues. If the computer's own data
are not faulty, then it clears its self-error tally and continues.

For some MSW computer configurations, the voter module will be
required to perform additional tasks. If one of the computers in the con-
figuration is designated as a master computer, then the voter module in
each of the computers must check on the behavior of the master computer. If
the master computer's data are good, then no further action is required.

If, however, the master computer's data are bad, then the next working com-
puter in the ring is designated as a new master computer. If the new master
computer's data are bad, the process repeats until all computers have been
tried as master computers.

[f and when a new master computer is obtained which has good
data, then the number of the new master computer is sent to all other
computers for voting and confirmation. If confirmation is received, that
computer which was selected as the new master is used. If no confirmation
is received, that computer which was selected as the new master is used.

If no consensus can be obtained, the current master computer is used. In
any case, the new master computer is set by whatever means is required by
the configuration. This may be only setting tables in all the computers of

the configuration or it may be actually setting hardware to designate the new
master computer.

2-24

2.1.3.2 Input/Qutput Module

The augmentation required for the input/output module of the
executive in a MSW computer configuration consists of data interchange
routines and reloading routines. The data interchange routines consist
of transmitting routines which transmit data to another computer and re-
ceiving routines which receive data from another computer. Similarly, re-
Toading routines are required which transmit a memory load from one computer
to another and which receive the memory load. It is desirable to have the
recejving routine be implemented as much by hardware as is possible.

The data interchange rdutines are used to exchange input and
output data for bus voting in configurations where bus voting is done by
software and for program state vector voting in all MSW computer configura-
tions. The data interchange routines in the sending computer initiate the
handshaking activity required to establish a connection between computers.
When the transmission has been completed, the sending computer proceeds to
send the data to the next computer in the ring. It may be possible on some
hardware to broadcast the data to all computers simultaneously so then only
one transmission will be required regardless of the number of machines in
the configuration. ‘

. The reload procedure is used to reload memory as the last resort
when all other recovery mechanisms fail. If a machine is well enough to
know it needs a reload, it will request it. Else, another compUter will
forcefully do the reload. In either case the computer being reloaded should
do the minimum possible role in the reload. This may require software, but
read-only memory or handwired control is preferable. The same hardware which
is used for initial loading by AGE could very likely be used for the function.

The reload strategy which is used always loads the next higher
numbered computer in the ring from the next Tower number. The routine which
transmits a reload is a relatively slow, low-priority routine. It transmits
words as the facilities are available until the computer being reloaded has
received all the program and inactive data words. When this has been
accomplished, computation is halted, the state vector is transmitted at the
highest possible speed and all machines begin computations at the same point.

2-25

2.1.3.3 Error-Handler Module (Figure 2.1-7)

The augmentation required for the error handler module of the
executive in an MSW computer configuration consists of the processing which
handles voter disagreement errors when the subject computer disagrees with
the other computers. The first step which is taken is to record the error
for Tater analysis if required. Then a comprehensive self-test is attempted,
If the test fails, the computer returns to attempting normal operations,
though it will probably be considered to be a faulty machine by the other
computers in the configuration. If the self-test is successful and does
not indicate any hardware malfunction, program memory damage is indicated.
Thus a check is made of the number of self-errors. If a specified number,
m, of self-errors has occurred, a self-reload is initiated to return the
computer to normal operation.

2.1.4 Applications Programs Considerations

The major effect on applications programs of using a MSW computer
configuration is the rollahead/rollback requirement which jmplies a need for
program segmentation. It is assumed here that, as discussed in the preceding
section, any voting which is required for sensor data or actuator control is
done by the executive routines.

The segmentation requirement for rollahead/rollback will have varying
impacts on the applications programs. Many programs will require only minimum
modification to run in a rollahead/rollback environment. These programs are
ones which run for only a short time when activated and require no internal
segmentation. The programs may be run often, but they complete each time
and can establish a new rollahead/rollback point when they compiete. Another
type of program which will require minimum modifications is one which requires
no state vector data between activations. This type of program always uses
the most current input data for its computations. Even if it is a relatively
long program, it must be restarted with fresh input data if an error occurs.

The type of program which is most effected by fecovery in a
rollahead/rollback environment is the type which requires a relatively long
time to run and has many variables in its state vector. For this type of
program, careful segmentation is required to establish rollahead/rollback

2-26

Wisagreement?

As Before

Record Conduct
———— Self -
Error
Test
RELOAD

((1+1) — (i)

FIGURE 2.1-7 ERROR MODULE LOGIC - ADDITIONS . -

2-27

YES

points with minimum size state vectors. Also, the amount of data in the
state vector at the end of each activation of the program should be minimized.

{ine other consideration affects applications programs. This i§ the
executive scheduling mechanism. If a synchronous-type executive is used,
the rollahead/rollback structure of the applications programs can correspond
temporally to their successive activations. If an asynchronous-type executive (
is used, an order of magnitude of complexity is introduced due to the number
of programs which may be active. When an asynchronous-type executive is used
in a rollahead/rollback environment, both the executive and the applications
programs must be structured to minimize the size and frequency of state vector
updates.

2,.1.5 Machine Features and RETs

‘The previous discussion of software redundant configurations dealt
with the general interconnections, synchronization, and recovery techniques
required when external hardware is held to a minimum. Several features are
characteristic of these configurations. Specifically, 1) an internal cross
connection network for exchange of information between computers, 2) software
techniques for synchronization, comparison checking and transient recovery in
the redundant computers, and 3) dedicated and non-dedicated I/0 structures.
The principal objective of this architectural description is to clarify the
features required for implementation of the software redundant configurations
and to identify applicable RETs and their influence on reliability modeling.
The next section is a qualitative discussion of those machine features necessary
to implement MSW configurations with off-the-shelf hardware requiring minimal
additional circuitry.

2.1.5.1 Machine Features

The salient requirement for an off-the-shelf machine for MSW implemen-
tations is the need for sufficient I/0 capabilities to support the internal cros:
connections and I/0 busses. This implies:

1. Signal/Interrupt Facilities for synchronization, and failure

notification and bus redundancy control where applicable.

2~28

2. Digital (word) 1/0 for support of 1/0 busses, Serial or
byte-serial transfer of information is consistent with the
relatively low data rates associated with the avionics appli-
cation and the requirement of high bus reliability. A DMA
capability (under control of the processor for reliability)

| though not essential will result in simplication of software
and an easing of processor timing (speed) requirements.

3. Internal -Cross-Connections The machine should support the
capability to send information to the other computers and a
multiple-port facility to receive information from the other
machines. If the computers are not precisely (hardware)
synchronized, it is necessary for incoming information from
other computers to be buffered. The most effective way to
provide this buffer{ng and to expedite the cross-transfer
of incoming I/0 information is to utilize DMA structures
for the transfer of information between machines.

4. Time-Qut Counting In order to proceed when one machine
fails to generate data at a comparison {or rollback) point
it is necessary to utilize a time-out count. This counter
may be implemented either by special hardware or in software.

2.1.5.2 Reliability Enhancement Techniques

There are a considerable number of optional features and techniques
which may be included in the machines for reliability enhancement. Examples
are.NDRO memory, wrap around bus checks, coding techniques, program rollahead,
etc. The following is a discussion of the implication of these features on
modeling parameters. The following is a listing of a number of these optional
RETs and their effects from the standpoint of reliability modeling.

2.1.5.3 Machine Options

1. NDRO Memory - Significantly reduces the probability of transients
which damage the contents of memory. Greatly reduces the
probability of transients which damage programs and data in
memory thus making most memory transients correctable by program
rollahead.

2-29

Memory Address Protection - Limits the extent of damage due

to a processor transient. Prevents processor transients from
damaging protected memory areas, typically programs and fixed
data, thus making most processor transients rollahead correctable.

2.1.5.4 Fault Detection

1.

Comparison - Information is compared between the computers at
rollback points and before outputs. Thus faults effecting the
currently active area of program and memory are detected with
probability approaching unity. This fault detection only occurs
at discrete intervals of time (typically once every minor cycle)
allowing considerable memory damage to occur before detection

of a transient.

Built-In-Test Equipment - RETs associated with built-in tests
such as memory parity checking, address protection, illegal
operation traps, etc. have a probability of detecting faults
which is considerably less than unity, however, those covered

by the BITE are detected sooner thus reducing possible memory
damage. When comparison is employed, BITE does not improve
the probability of fault detection but does in some percentage
of faults allow for more rapid detection.

Duplex Fault Detection - When only two computers remain func-
tional, the probability of recovery from failure depends upon
the effectiveness of diagnostics utilized to isolate the faulty
machine and the effectiveness of BITE. Typically the coverage
of diagnostics indicated by manufacturers includes the use of
BITE, without which software diagnostics would be Targer, slower,
and lTess effective.

Memory Comparison There can exist faults in memory areas seldom

utilized. The maximum duration of these lurking faults can be
bounded if memory is compared at a low rate between machines

on a periodic basis. Lurking faults tend to increase the chance
of double failures and thus should not be allowed to remain
within the system,

2-30

2.1.5.5 Transient Recovery

1.

3.

Program Rollback - Given that a transjent is detected there
exists a probability of successful rollback corresponding

to the probability that only local variables are damaged

in memory. This probability is significantly increased by

the use of NDRO memory and address protection. Associated
with program rollback is a recbvery time during which the
program segment is repeated during which computation is halted
and the system remains vulnerable to additional faults.

Program Rollahead - Has the same probability of transient
recovery as program rollback, but has a much smaller recovery
time associated with transfer of state vector information.

Memory Copy - Should correct all transients if information
from other computers is correct and no additional faults occur
during the long copy duration (in the order of seconds).

2.1.5.6 AInternal Cross Connections

1.

Failure Treatment Failures in the internal cross connections
have the identical effect of failures in computers for nearly
all failure modes. Failure of an output drivers and input

receivers are associated with their related computers as is
the corresponding failure rates,

2.1.5.7 I/0 Structures

Dedicated and non-dedicated I/0 busses and peripheral interfaces are
architectural features requiring comparative simulations for evaluation.
Dedicated and non-dedicated I/0 are included in the simulator and treated in
the following fashion: |

1.

Non-dedicated I/0 allows separation of the computers, bus
structures, and sets of redundant peripherals such that the system
reliability is reasonably expressed as the product of their
individual reliabilities.

2-31

2. Dedicated I/0 allows interactive failures such that the
computers, bus, and I/0 must be simulated together to account
for dependent failures. (For example failure of a computer may
disable a large set of sensors).

2.1.5.8 Bus Fault-Detection

Two technigues are commonly utilized for bus fault detection:
wraparound checks and error detecting codes. The use of bus fault detection
techniques must be examined in conjunction with the manner in which redundancy
is applied to the I/0 buses. If multiple buses are provided with voting at
the receiving modules, fault detection and correction is readily implemented
in the associated voters as long as three buses are functioning properly.
However, when only two buses remain functional, the failure cannot be resolved
by a voting process and additional fault detection techniques must be employed
to identify the one which is functioning properly. If a standby redundant
bus configuration (one active with spares) is utilized fault detection is
essential to identify the fault and activate a spare bus.

1. Wraparound checks are characterized by periodically generated
test outputs which are returned from one or more peripheral
devices to verify proper functioning of the bus. While these
checks have very high coverage with respect to permanent bus
faults, they have two disadvantages: (a) faults are not detected
instantaneously, but only at the occurrence of the next periodic
check; (b) transient faults are not detected.

2. Coding techniques provide concurrent fault detection with a
coverage determined by the failure modes of the bus and the
amount of redundancy employed in each message. The simplest
fault detecting code is multiple parity bits which can be imple-
mented to provide high coverage at minimal cost [ULTRA 74].

In order to prevent erroneous commands from being accepted by
actuators (in the case of standby or residual duplex buses), coding techniques
should be employed. The use of error detecting codes allows TMR buses to
function after the failure of two component buses. The effect of this RET is
modeled in Section 9.

2-32

2.2 HARDWARE - AIDED SOFTWARE CONFIGURATIONS (HASW)

Hardware-aided configurations are characterized by the use of
exterha] hardware for fault-detection and synchronization. The goals of
this approach are to (1) increase speed of computation and simplify software by
performing the task of comparing state vectors and outputs in hardware, and
(2) to allow the use of off-the-shelf computers with minimal I/0 facilities.
A block diagram representing the general class of hardware-aided configurations
is shown in Figure 2.2-1.

A set of N computers is connected to a set of I/0 busses through a
special External Hardware Interface (EH). This interface may be a single,
massively-redundant structure or a set of identical modules dedicated to either
individual computers or busses but in either case the following functions are

required:

1. Detection of faults by comparison of outputs and notification
of the computers of the identity of the disagreeing unit by
generating levels or interrupts. ‘

2. Synchronization of computers (when applicable) and buffering
bus information.

3. Exchanging of information between computers in order to effect
transient correction.

4, Supplying the bus{ses) with correct information in the presence
of faulty computers. (This is done using either switching or
voting as in the MSW case),.

The computer I/0 interface to the EH interface is assumed to have the
following properties (which are simple but consistent with a large number of
computers.)

1. Programmed output consists of a single word including device
address, data, and an associated strobe signal. The output
may cbnsist of parallel, serial or byte-serial data.

2. Programmed input accepts a single word which, upon issuance
~of a command output, is sampled after a short fixed time (in
‘the order of a few microseconds).

2-33

(DISAGREEMENT/COMMAND/SYNC)

INTERRUPTS/LEVELS
r= == - 7"
| |
o COMPUTER [I
i H
| EXTERNAL |
, i HARDWARE l
COMPUTER ™ INTERFACE |
#2 SN | |
I l P h Y
| (Fault Detection)
| Synchronization, | < 7
| a Intercommuni- REDUNDANT
COMPUTER | cation, 1/0) | - 1/0BUS
#3 ——————— |
" ' 1
° | |
| |
COMPUTER [i
#N | I
' |
_______ J

FIGURE 2.2-1

EXTERNAL HARDWARE INTERFACE:

HARDWARE -AIDED SOFTWARE CONFIGURATION

2-34

3. A DMA input accepts data, as delivered from external
devices and stores this information, within a worst- .
case time of a few memory cycles, in pre-defined
sequential Tocations.

A byte-serial or serial computer interface is preferred if the I/0
data rate is acceptably Tow in order to reduce connections between the computers
and EH interface.

The EH interface must provide buffering for incoming bus informa-
.tion for the following reasons. First a typical processor expects "immediate"
availability of requested data within a few microseconds of issuance of an input
command. This is often not consistent with delays imposed by a bus structure.
Secondly, a typical avionics bus is serial, self-clocking (Manchester) and
synchronized by the sending unit, while the typical processor accepts paraliel
or at best'byte—seria1 information. Thus the approach is to command the sensors
to return data to one or more buffer registers in the EH interface and all
computer input commands access registers within the interface,

Similarly output information is buffered for transmission on the bus
for three reasons: {7) to allow parallel or byte-serial to serial conversion
{where applicable), {2) to hold information from loose1y synchronized computers
until all outputs are available for comparison, and (3) to provide a mechanism
for holding information for transfer between computers.

‘ "The simplest means for describing the functioning of the EH interface
is to consider the non-redundant case. The following section will present a
simplex model of the external hardware associated with a hardware aided redundant
configuration. Subsequent sections will deal with options for its redundant
implementation and example configurations.

2.2.1 The External Electronics Module (EEM)

The non-redundant building-block element of the external hardware
interface is designated the External Electronics Module (EEM), and is
shown in Figure 2.2-2. The EEM accepts and buffers outputs from the computers,
synchronizes the machines, provides voting for outputs, provides for inter-
computer communications, and buffers returning inputs. Examples are given for

the case of a non-dedicated EEM with multiple buffers for inputs, and the case

2-35

where an EEM is dedicated to each computer and has only one input buffer. The
following paragraphs describe the functioning of the EEM and its interaction
with the redundant computers to effect fault detection and recovery.

2.2.1.1 Case 1 - No Faults

‘At the point of outputting or comparison of state vector information
(by outputting to a non-existent peripheral) the computers load the EEM output
buffers and halt. Upon receiving two agreeing outputs, the EEM waits for a

LA A PR . R

mes; during wnich the other

"worst case" time interval {e.g., a few i
computers .should have completed the output. At this point all outputs are

compared, the result of the comparisons are conveyed to the computers via the

i e 2
ISLruc L iun oi

disagreement indicators and a completion interrupt is sent to the computers to
re-establish computation. 1If the output was addressed to a sensor or actuator,
the output buffers are voted and conveyed to the bus and, if a data return is
commanded, the returning information is loaded into the input buffer. Fach
computer has control of its associated input buffer for subsequent access to
its returned information.

(The information on the bus is derived as an adaptive 2-out-of-n
vote. Two agreeing output commands must occur within a very short time interval
before a command is allowed to each the bus. Two nearly simultaneous jdentical
outputs from faulty computers are considered to be a sufficiently remote
possibility that it is not protected against in the EEM). For the case of a
dedicated EEM, information is only returned to its associated computer and thus
only one input buffer is provided.

2.2.1.2 Case 2 - One Computer Disagrees

In this case N-1 computers complete an identical output and a faulty
computer either fails to output or ocutputs incorrect information. The machines
are restarted by the EEM by vaising the completion interrupt, and simultaneously
the disagreement level associated with the faulty computer is sent to all
computers. The disagreement indication causes two actions:

1. If capable of doing so, the diségreeing computer is halted
by its disagreement interrupt.

2. The agreeing machines have two options; (1) classifying the
disagreeing machine as faulty, masking out its disagreement

2-36

LE-2

Control Levels To Control Levels To ”

AllComputers . Dedicated Computer
< =z
T~ -
Control Control
— — = Buffer |
Data & Data &
Commands Vote/ |gus Out Commands ——- Vote/ |gus Out
From Com- |- From Com- S
Computers pare [~ Computers pare |7
————{ Buffer J|—= S “Butfer }
' 1 Bus In _ 1 Bus In
e
Data To ~—— ' - —
Computers . Data To
~—+t—— Butfer = Dedicated —=—
‘ Computer _
—~— B) Dedicated
~—1—{ Butfer }=-

*Control Levels -

m Disugreementdlndica'tors {C)sne Fhor Eiach Computer)

_ ; 2] Completion Indication For Synchronization

A) Non-Dedicated (3) Message Alert (By Command From At-Least Two
Other Computers)

FIGURE 2.2-2 THE EXTERNAL ELECTRONICS MODULE (EEM])

interrupt and ignoring its further outputs, or (2) attempting
a transient recovery.

Typically the first disagreement is considered to be caused by a
transient and a transient recovery is attempted under control of the agreeing
computers using rollahead, memory copy techniques, roliback, or restart.
Recurrence of the disagreement after one or more transient recovery attempts
is considered evidence of a permanent fault, the disagreement indication is
masked in the working computers, and the faulty computer is subsequently ignored.

2.2.1.3 The Transient Recovery Mechanism

In order to effect transient recovery, a communication path must be
established such that the agreeing computers can enter data into the memory of
the faulty machine and command its restart. The adaptive voting capability is
utilized within the EEM to allow this intercommunication as described below: |

1. The EEM will accept commands addressed to individual
computer units from the agreeing machines. If two or
more agreeing commands are received within a designated
time window, the information received will be transferred
directly to the input buffer of the addressed machine and
the corresponding message-alert signal(s) is transmitted.
(Note that in the case of dedicated EEMs, each EEM only

“accepts commands for its associated computer).

2. The message-alert signal may be a single interrupt to a
subroutine which interprets the incoming information as
memory addresses, corresponding data, and transfer addresses.
This approach relies on the existence of a small interrupt
routine in the memory of the faulty machine which interprets
messages from the other computers and effects transient
recovery operations. A second approach is to utilize micro-
programming through AGE interface commands so that the response
to commands from the other machines resides in protected memory.

Transient recovery algorithms are similar to those used in the previous
software redundant configurations (see 2.1.3 and 2.1.4)}. When a computer dis-
agrees upon output of a state vector, the agreeing computers transfer the correct

2-38

value of the state vector and the computation starting address to the dis-
agreeing machine. If the rollahead is unsuccessful, as indicated by recurrence
of a disagreement from the same computer within a pre-defined time period, an
{optional) memory copy may be attempted. The agreeing computers transfer the
contents of memory to the disagreeing machine and attempt a restart. If the
previous transient recovery attempts are unsuccessful, the disagreeing machine
is adjudged to contain a permanent fault, its disagreement interrupt is dis-
abled in the working machines, it is commanded into a halt state, and its sub-
sequent disagreement indications (if further outputs should occur) are ignored.

2.2.1.4 Case 3 - Multiple Faults

There exist two cases of multiple fault conditions; (1) the expected
case where one or more computers have previously failed and the "next" single

failure occurs, and (2) the case where more than one failure occurs simultaneously.’

1. If one or more machines have failed previously and a single
computer fails, a single disagreement indication from that
machine is acknowledged by the remaining good computers since
the disagreement indications of previously faulty machines have
been masked out. Transient correction is carried out identically
to Case 2 above.

2. Recovery from multiple, simultaneous disagreements can be
effected if at Teast two computers remain in agreement, as
the two remaining computers can initiate transient recovery
in the other machines. If all computers disagree, no output
is acknowledged by the EEM which requires two agreeing outputs
to respond. A period without I/0 activity corresponds to this
condition and may be detected by Togic within the EEM modules
which would cause a system restart in all computers.

System failure occurs in the previous configurations when all but two
computers have failed and one of the remaining computers suffers either an un-
correctable transient or a permanent failure. When two computers remain func-
tional, this condition is desjgnated the Residual Duplex Configuration. The
following section is a discussion of techniques for recovery from failures in
the residual duplex configuration and continuing computation with a single
simplex computer.

2-39

2.2.2 Residual Duplex and Augmented Voting Redundancy

In order to effect recovery when only two computers remain functional
it is necessary to employ program rollback for transient correction, diagnostics
for permanent fault isolation, and modifications to the EEM to override the out-
put vote and allow the remaining single computer access to the I/0 bus. The
following is a description of the response to faults in the residual duplex
configuration.

1. The EEM units are notified by command from the twe functioning
processors (before occurrence of a fault) that only two computers
remain and the identity of those two processors is stored.

2. The two remaining computers modify the interrupt handling
routines associated with their disagreement interrupts such
that a program rollback is performed upon disagreement. (In
the residual duplex mode the EEM accepts outputs from either
machine and, if a disagreement occurs, it inhibits the output
and indicates disagreement to both computers).

Program rollahead is no longer applicable since it is not
known which machine contains correct information and thus the
rollback segment is re-executed using the previously stored
(N-Tth) state vector.

3. If the disagreements continue, the EEM commands a diagnostic
in both machines which includes hardware tests and checksum
verification of programs. The machine which delivers a properly
computed (pre-determined) output will be allowed to continue
the computations. If both computers pass the diagnostic or if
both fail one computer is chosen and a system restart is
attempted. (The latter cases have a significant chance of
failure).

2.2.3 A Recovery Algorithm: Hardware-Aided Software Configuration

The following section describes an example recovery mechanization
for a Hardware-Aided Software RCS configuration. It is intended to indicate the
interaction between hardware and software in a typical recovery mechanization.

2-40

2.2.3.1 Hardware EEM Functions

The EEM provides the following signals to (1)} its associated com-
puter if it is dedicated or (2) all computers if it is non-dedicated.

1.

1/0-Complete Interrupt Indicates that an output has been
completed by at least two agreeing computers and an elapsed

time At has occurred to allow all other machines to cutput.
As all computers halt after output the I/0 complete.interrupt
serves as a restart/synchronization signal;

Disagreement Indicator Signals aré sent simu]taneious]y
with the I/0 complete interrupt. There is one Disagreement
Indicator for each computer which indicates that computer's
disagreement with the threshold-voted result. |

Rollback Interrupt When the EEM ijs notified that only two
computers remain functional, subsequent disagreements of the

two machines result in a Rollback Interrupt. This interrupt,
sent to the two residual duplex computers, causes a program
rol1back.

Diagnose Interrupt If rollbacks prove unsuccessful in the

residual duplex configuration, the EEM commands a diagnosis
of the two machines. A machine which successfully comp]etés
the diagnostic is connected to all buses and continues in
simplex.

Message Alert Interrupt Two agreeing computers may transmit

a word to any other computer by specifying a unique device

ID upon output. The data word is transferred to the input
buffer associated with the addressed computer by the EEM and
a Message Alert. The Message Alert interrupt is sent to that
machine {see Figure 2.2-3). In the case of dedicated units,
the EEM associated with the addressed machine recognizes the
device I/D and Toads its associated input buffer. |

2-41

VA

Rollahead

1/0 Complete
Interrupt RA1
ol o Y
All Units Disagree? — == System Restart
N
. Save Disagreement Mask
Is this Unit {I) ¥ Disable Disagreements; Disable (Mask} Disagreements;

In Disagreement?

Rollahead

Initialize for Recovery; Halt

Recovery State (RS}+—Rolighead

Send Rollahead Command

To RA2
Are there any unmasked _No

Disagreements? {FEW)

by

If Multiple Disagreement
Select one on Basis of
Priority (Denoted Unit J}; FU+~J

Increment Fault Count for
Unit J {FC;«FC;+1)

I

Memory COPV— O

to Faulty Computer (FU = J);
J Word Count, WC+0

To MC2
° Wait for Next RA2
1/0 Completion ‘
Continue Interrupt (RA2) O'—"' Increment Word Count {WC)

Computations

b

Transfer —e——-= Last Word? [TRA Address)
Next Word {WC = M)
to Faulty

Computer (FU)

t Yes

Recovery State (RS)—Normal;
Restore Disagreement Mask;
Wait for Synchronization At

- Rollahead ‘
Continue Computations

Mask its
Disagreement Indicator

l

=2 NotifyEEM Y
Ct?mputers of Duplex —1—— Continue Computations
nW=? State

FIGURE 2.2~3a RECOVERY SOFTWARE - (ROLLAHEAD) HARDWARE -AIDED CONFIGURATION

Ev-¢

Memory
Copy
MC1

Enter FC [=J) in

Copy Stack {CS5) - FIFO

Enable Perio&ic Entry;
Disable Disagreements
from Unit J

Rollback
Interrupt

_ = Perform
Diagnosis

l——> Continue Computations

Memory
Copy
MC2

Periodic Entry

Recovery State<—Memory Copy;
" Disable Disagreements, Save Mask

|
Send Copy Command + Base Address
to Faulty Computer - C$(0);
Word Count (WC)}+—0; PE+~—PE +1,
Increment Sub-Block Counter l

Wait for Next
/0 Completion

Enable Disagrezment
Indicator for Faulty
Computer C5

|

No Is Amther

Copy Request
| ' in Copy Stack?
Disab} .
Periodic Entry Yes

[PE+—0, i.e.,
Reset -

Sub-Block Countar

- Increment WC Interrupt (MC2)

\
WC =N? i.e., No Transfer

Yas to Faulty
Machine - CS({0)

J {Indexed by WC)

Yes PE = M

Copy Complete?
No

. Restore Disagreement Mask;
Recovery State — Normal

|

Continue Computation

(Wait for Next Periodic Entry
if It is enabled)

FIGURE 2.2-3b RECOVERY SOFTWARE - (MEMORY COPY) HARDWARE-AIDED CONFIGURATION

2.2.3.2 The Software Function

Figure 2.2-3 represents a block diagram of the software algorithms
utilized to carry out fault recovery. The software in each functioning
machine maintains a record of those computers which are properly functioning
and those considered to have failed. The disagreement indicators are per-
manently masked {ignored) for previously discarded machines. The recovery
software has four states: normal, rollahead, memory copy, and wait, which

1. Normal During normal operation at the completion of each
output, the computer checks the unmasked disagreement indicators
and if there are no disagreements it resumes normal computations.
In the case of disagreements, the following actions are taken:

a. If the computer is itself in disagreement, it halts
(if possible) and waits for rollahead or memory copy
information from the other computer,

b. If a different machine is in disagreement, it examines an
error tally associated with the faulty machine (ch).
If that machine has not previously disagreed, the rollahead
state is entered and the current state vector and restart
address is transferred to the disagreeing machine. If a
previoué rollahead has been unsuccessful within some time
interval at, a memory copy is attempted.

2. Rollahead The current state vector and restart address are
transmitted from the agreeing machines to the disagreeing
machine. Fault indications are masked during the rollahead
with two exceptions. If one of the working machines disagree
during the transfer, it enters the wait state.

3. Memory Copy The programs, constants, and a minimal set of
variables required to permit a system restart are transferred
to the disagreeing machine at a low duty cycle. Since the
memory copy cannot be allowed to consume more than a few

2-44

percent of the available processing time, the copy information

is transmitted periodically in short blocks. Thus a memory

copy is initiated by activating a periodic entry to the transfer
program. The Memory Copy State is only entered during the
transfer of each short block. The final block contains variables
necessary to perform a "warm" system restart.

4. MWait State A machine which recognizes that it is in disagree-
ment upon receiving an I/0 complete interrupt or BITE error
indication halts until loaded by the other working machines
with a program rollahead or memory copy. If a memory copy is
unsuccessful the disagreeing machine is ignored. The fault
tallies associated with each machine not designated as perman-
ently faulty (FCjzéé) are cleared if sufficient time passes
without recurrence of a fault.

Two additional interrupts are shown in Figure 2.2-3 as single
arrows which are utilized by the EEM to command program rollback
and diagnosis when only two computers remain functional.

In the case of non-dedicated EEM's an additjonal level of
complexity is added to the software. A set of outputs is
received from each EEM and an adaptive vote must be taken on
these inputs in order to eliminate the effects of defective

EEM units on the recovery process. This is straightforward and
not included in the figure.

2.2.4 Utilization of Redundant EEM. Units

Two general approaches to implementing redundant EEM units are shown
in Figure 2.2-4. The first approach employs non-dedicated redundancy such that
any of several EEMs can be utilized by each computer. The second approach
utilizes a separate EEM dedicated to each computer.

2.2.4.1 Non-Dedicated Redundant EEMs

As shown in Figure 2.2-4a, there are N computers and J EEM units.
Each EEM accepts outputs and commands from all the computers and inputs from
all buses. Therefore, when functioning properly,. each EEM delivers identical
data and control informqtion to the computers. By a process of voting and/or

2-45

i *
|_ROL |
v/s v/s —rge e
ci —ROJ gEM1[" BOS
Col coz—] }BI
CON—-~| ~—-N,2,5
CN
129 CN2
i i } ‘*“"‘RO‘E. }
v/S VIS e, -—e=BO1
ROJ —= B02
c2 EEM 2 [—BOS
coz o1 ---—}Bl
: CON—+ —i1,2,5
cN] :
129 :
IR —ROI
R O2
v/s VIS[T ey criu
¢N BO
—1,2,5
co3 EEMJ
CON—- -—11,2,5

a. NON-DERICATED REDUNDANT EEMS

CO-COMPUTER QUTPUT

RO-EEM DATA RETURN TO COMPUTERS

CN-D| SAGREEMENT INDICATORS & CONTROL LEVELS
BO-QUTPUT BUS

BI-INPUT BUS

V/5-VOTE OR SWITCH FUNCTION

CHMi |
cor €92 —801
¥ sl EEM | *—BI1
ci CON— ~—B(2
~——813
CN2
coz CO1—] BO?
: —=EEM2 [~—BI
c2 CON—»! - 12
}-—B13
: CNN
CON .
-——-.-..-.B
CO1—~ 03
CN CO2— EEM 3 |=———BI1
A j=———BI2
—013

b. DEDICATED EEMS

FIGURE 2.2-4 REDUNDANT EEM IMPLEMENTATIONS

2-46

switching, the computers can ignore the outputs of one or more faulty (disagreeing)
EEM units. (Typica]]y-the input to the_computers from EEM units would be voted
using an adaptive software Qote requirihg'one more than half of the inputs to

agree from EEM units which have not previously been adjudged faulty).

If each EEM can be commanded to output on one of several (s) redundant
bus 1ines failures in the EEM can be decoupled from bus failure, resulting in
a totally non-dedicated system.

2.2.4.2 Dedicated EEMs

-

In this case an EEM unit §s dedicated to each computer resulting in
considerable simplification of the EEM (see Figure 2.2-2) and the associated
interconnections. This approach provides adequate reliability if the failure
rate of the EEM and associated bus is small with respect to the failure rate of
the computer. In this case failure of an EEM may. result in disabling the associ-
ated computer and bus. Failures which cause improper control signals result in
failure of the computations on the associated computer, while failures in voting
for output disable the associated bus. Non-dedicated sensors and actuators are
recommended using this configuration.

2-47

2.3 MOSTLY-HARDWARE CONFIGURATIONS

Mostly-hardware configurations are structured in such a way as

to minimize the amount of software required to support fault detection and

recovery.

Table 2.3-1 indicates the additional supporting software functions

employed in software, hardware-aided and mostly hardware configurations.

Mostly- Hardware-Aided Mostly-

Software Software Hardware
Fauit Detection by Comparison X
Synchronization X
Transient Recovery X
Recording and Masking Perma- X

nently Faulty Modules

TABLE 2.3-1 SOFTWARE OVERHEAD OF FAULT-TOLERANT

CONF IGURATIONS

The special software features associated with hardware-aided con-

fiqgurations are:

1.
2.

Rollback/Rollahead structured programs.

Identifying recurring faults and the decision to employ
rollahead, memory copy, or classify a computer as perménent]y
faulty.

Control of data transfers for rollahead and memory copy.
Disabling (fault response) faulty machines.

Diagnostic programs for recovery when only two computers
remain functional.

A "warm" restart capability. A restart point at which compu-
tation can be resumed with a minimum of variables required for
initialization. (Employed to minimize downtime for transfer
of variables at the end of a memory copy.)

Mostly-~hardware configurations perform the functions associated
with the previously discussed hardware-aided software configurations along
with implementing one or more of the above functions in hardware.

2-48

The associated. hardware recovery elements will be considered as
extensions to the EEM previously discussed. And the augmented EEM's will be
protected utilizing non-dedicated redundancy as shown in Figure 2.2-4,

2.3.1 Augmented EEM Units

_ ‘The primary augmentation of the EEM units to effect mostly-hardware
control over the recovery process is the addition of a "system state" store
consisting of a working/failed flip fiop and a tally count for each computer.
Using this information the augmented EEM acts as a finite-state machine. The
current system state and disagreement indications are combinatorially mapped
into a specific recovery action. Similarly the fault indications are utilized
to update the system state. This mechanization is shown in Figure 2.3-1.

The state control is similar for a large number of implementations while the
recovery net implementation is custom to the particular recovery algorithms
employed. Thus an informal description of the state control function will be
given below, followed by descriptions of the custom recovery control for the two
example configurations in the following sections.

2.3.1.1 The State Control Function

The state control function is to update the system state store
to indicate the current status of the redundant computers within the system.
Associated with each computer is a tally count which is advanced upon its
disagreement with the other working machines. The tally counts are periodically
reset if a sufficient period of time has elapsed to indicate that a transient
has been corrected. Typically, after the first disgareement, (Ti=1) a tran-
sient recovery is attempted. If subsequent disagreements recur, the count is
advanced (T1+Ti+])’ additional recovery techniques are attempted and, after
a prescribed number of unsuccessful recovery attempts (T1=N), the computer
is adjudged permanently faulty (W+F) and further recovery attempts are
discontinued.

2.3.2 Recovery Control

A Togical starting point in the description of the recovery
funct10ns carried out by the augmented EEM is the control levels between
the AEEM and computer units. The following control levels are a “typ1ca1“
set generated by the augment EEM

2-49

1. 1/0 Complete Interrupt (ICI} - Same as HASW configuration
provides synchronizing restart after computers output.

2. Send Rollahead (SR) - Causes computer to output a state
vector and rollahead address. This information is
received from all computers thus commanded, voted in the
AEEM and loaded into the input register of the disagreeing
machine.

3. Receive Rollahead (RR) - Is sent to disagreeing computer
to accept rollahead information from its input buffer.
(Details of control can be implemented several ways. A
typical case is to treat SR, RR, and ICI with the following
interpretation: SR - TCI - send first word, SR . ICI -
send intermediate word. The last word is a transfer address
for rollahead restart. The AEEM is notified by a special
device code. Similar interpretations are utilized by the
receiving computer (RR . TCI - first, RR - ICI - intermediate,
and RR - ICI - last word and start.))

4. Send Copy Block (SCB) - Causes computer to output a block
of data for memory copy.

5. Receive Copy Block (RCB) - Is sent to disagreeing computer
to accept memory copy information from its input buffer.
(Several detailed implementations are possible similar to
the example in 3 above).

6. Halt - Halts the commanded machine.

7. Cold Start - If all computers disagree the AEEM commands a
cold start of all machines currently classified as working.

8. Diagnose - Causes computer to execute a self-diagnostic
including program check-sums.

Two recovery strategies will be discussed in the following sections.
The first employs only memory copy techniques for transient recovery and, at
the cost of slower recovery of the disagreeing machine, eliminates the require-
ment for rollahead/rollback structured programs. Unfortunately, this approach

2-50

FROM
COMPUTERS

CONTROL SIGNALS

TO COMPUTERS
b A
RECOVERY NET
&EEM CONTROL <[|-_—
ii \
W/F W/F W/F
TALLY| TALLY TALLY DISAGREE-
MENT
Compu- [Compu-| e ¢ ¢ [COmpu- ~{INDICATIONS
ter ter ter
! N
SYSTEM j
STATE .
STATE-~
:D CONTROL <{5
NET
Y
VOTE/
COMPARE BUS OUT
~| BUFFER -
. l v BUSSES IN
={ BUFFER]g' +—
«+ BUFFER }==
< BUFFER |-
.
« BUFFER |==

FIGURE 2.3-1 AUGMENTED EEM FOR MOSTLY-HARDWARE CONFIGURATIONS

2-51

requires system restart to recover from transients in the residual duplex
configuration. The second approach utilizes program rollahead, rollback,
and memory copy techniques.

2.3.2.1 Memory Copy Implementation

The memory copy recovery algorithm is indicated in Figure 2.3-3a.
If a computer disagrees upon output (Di) and it has no previous disagreements
within a fixed time interval At (TCi=0)
b

h
1

, then a memory copy is attempted.
Periodically on the order of every millisecond a small block of program data
is transferred to the disagreeing machine. This transfer is maintained at

a low duty cycle so not as to degrade the computations of the remaining compu-
ters. After transfer of the final block, which consists of variables necessary
to restart all computers in an initialized state, the memory copy state is
terminated and the disagreeing computer is brought back into operation. If
the disagreement recurs within a short time (TC?=1 and Di) the computer is
assumed to contain a permanent fault, is classified faulty, and the voter is

commanded to ignore any further outputs from the machine.
Two approaches are suggested for multiple faults:

1. If the state control is disabled during a memory copy
additional faults in other computers are ignored during
the memory copy. As long as sufficiently many additional
computers do not fail such that the voted output remains
valid, correction of additional faults can be deferred
until the current copy is completed.

2. A second approach is to re-initialize the memory copy
when an additional fault occurs, and perform the memory
copy into both (or all) the defective machines.

Residual Duplex

Items 3, 4, and 5 in the memory copy algorithm (Figure 2.3-3a)
correspond to actions taken in the residual duplex and simplex configurations,
i.e. when only two or one computers remain functional. The only mechanism
available for transient correction when one or two computers remain
functional is a system restart (3,5). If in the residual duplex case a

2-52

1) lj_TCiEO and Di and pw>2 then Memory Copy*

2) lf_TCi’j=0 and D, . and pw>2 then W.+F,

o

3) If TC, .=0 and D, . and pw=2 then Restart
— 1) 1] .

4) I£ T, 5=1 and D; 4 and pw=2 then Diagnose**
.]]

5) 1f T.=d and D, and pw=1 then Restart

a) MENORY COPY ALGORITHM

1) 1£_Tci=0 and Di and pW>2 then Rollahead

2) If TC,=1 and D, and pw>2 then Memory Copy

3) If TC.=2 and D, and pw>2 then W.»F,

4) If Tci,j=0 and Di,j and pw=2 then Rollback
5) If Tci,j=1 and Di,j and pw=2 then Diagnose**
6) If TC;=d and D;*** and pw=1 then Rollback

b) ROLLAHEAD-ROLLBACK-COPY ALGORITHM

*Memory Copy

1) If P and Blockcount < k then Transfer Data Block
2) If P and Blockcount =k’ then Exit Memory Copy

**Diagnose Select machine which delivers correct result

1) If i=ok, j=Fail then HjéFj

12) 1f f=0k, j=ok then UoF select One
3) If i=Fail, j=Fail then WF,) Arbitrarily
***BITE-Indicated Fault
DEFINITIONS
p=periodic interval k=maximum number of blocks
Di=di5agreement in TCi=ta1]y count for ith computer
ith computer
pw=number of working Hi+Fi=cIassify ith computer as
computers failed '

FIGURE 2,3-3 AUGMENTED EEM RECOVERY ALGORITHMS

2-53

system restart is unable to correct the disagreement between the two
machines, a diagnosis is commanded (4) and, if it is successful, the
system degrades to simplex operation.

2.3.2.2 Rollahead - Rollback - Copy Implementation

A recovery algorithm which includes rollahead, rollback, and
memory copy techniques is indicated in Figure 2.3-3b. When more than two
computers are functioning (pw72) the transient recovery sequence consists
of program rollahead followed (if unsuccessful) by memory copy. If the fault
persists after a memory copy it is assumed permanent, the computer is classi-
fied as faulty, its outputs are excluded from the vote, and further recovery
attempts are abandoned.

When two computers remain functional (pw=2) a rollback is attempted
for transient correction. If unsuccessful, both computers are commanded to
run a diagnostic. One is selected and, if successful, the computation continues
in simplex with program rollback upon BITE-detected faults for partial transient
protection.

2.3.3 A_Comparison of ‘MHW and HASW Implementations

The principal difference between the mostly hardware and hardware-
aided software configurations is that in the former the system state informa-
tion and recovery decision mechanism resides in a central "hard core"

In the HASW confiqgurations this information and control mechanism is distributed
and replicated within the software of the individual computers. The tradeoff
between the two implementation types is largely a matter of cost.

Implementation costs in the mostly hardware case includes not only
augmentation of the EEM units, but also a mechanism for protecting against
and correcting transient errors in the augmented EEMs. A process of voting
on all internal states (NMR synchronization) is required as well as a well
defined AEEM restart in case of information loss. To protect against transients
it is advisable that the AEEM control states be maintained in non-volatile

storage. Thus the augmented EEM is considerably more complex than the HASW
EEM without augmentation.

2-54

The additional software necessary for HASW implementations with
respect“to the mostly hardware case is estimated to require on the order of
1000-2000 words of storage. (Note that program diagnostics and in many
cases rollback-structured programs are required in both implementations).

Memory is allocated for most of the candidate computers in 8k
modules, thus the machine is procured with 16k or 24k or 32k words. Often
under these circumstances, additional memory exists beyond that required for
the flight programs and thus the implementation of HASW routines can be placed
in this extra "core space" at nominal extra cost. If this is the case (as
expected) for the RCS application, the HASW-type implementation is the most
cost-effective.

2-55

THIS PAGE INTENTIONALLY LEFT BLANK

2-56

CEXECUTIVE STRUCTURE

The structure of the executive designed for the RCS study is
described in this section. The design goals for the executive are discussed
first. Then each module of the executive is described. Several scheduling
mechanisms are then presented and compared. Finally, the adaptability of
the desjgn is considered.

3.1 DESIGN GOALS

Four design goals have beéh eétablished for the executive. Thése
goals épecify general guidelines for fhe'execut1VE-design as we11.as indicating
& particular application .in which the executive could bée used. These goals
are to design an executive which: -

1. Can be readily adapted as an executive model for all RCS
configurations under consideration.

2. Is general enough to support any reasonably foreseeable
avionics application. '

3. Makes clearly visible all the features requﬁfed to support
a digital flight control application.

4. Makes available the necessary parameters for configuration
evaluations.

~ The RCS configurations under consideration in this study all use
hardware, software, and program-execution redundancy in varying aegreés to
obtain fault tolerance. The modeling undertaken as part pf the RCS work 1is
of a much broader scope than that attempted in the past. ThiS mode1iﬁg not
only gives explicit consideration to both perménent and transient faults,
but also treats the actions of the relevant software. In considering the
relevance of the various portions of the software,.Tt_waslrecognized early
that the details of the actual applications programs have 1ittle to do with
the fault-tolerance of an RCS. However the exécutivg structure is important
and thus must be considered.

Since this study is directed toward multicomputer systems rather
than encompassing multiprocessors, a single executive may be designed for
use in each of the computers of the configuration. Thus,. the first design

3-1

goal ensures that the executive which is designed can be used in all computers
of all configurations being considered, adapted as required by the configuration,

An earlier study [RATN 73] has shown that the computational environ-
ment imposed by avionics applications is such that the majority of computations
must be performed periodically, although the computations performed will vary
with the phase of the flight and the mode(s) used. Thus the computational
reguirement imposed by the avionics environments in which the computer systems
being considered will operate involves primarily periodic, cyclical tasks of
varying complexity, rate, and duration. The processing of occasional aperiodic
tasks is also required. The executive has been designed to meet both of these
requirements and thus be generally applicable to all avionics applications.

The structure of the executive which has been designed s applicable to all
applications, but details are application-dependent to varying degrees. The
digital flight control application is being used as an example of a specific
application to ensure that the general design can be specified in some degree
of detail for one specific application. Thus, the second and third design
goals, are complementary.

3.2 SKELETON MODULES

The design of an executive for a fault-tolerant computer system
includes all the features required for an executive designed for a conventional
(i.e., non-fault-tolerant) computer plus those unique features required in
the software to implement the fault-tolerant capability designed into the
fault-tolerant system. The Reconfigurable Computer Systems (RCS's) under
consideration by this study are, by definition, fault-tolerant computer
systems. Although each different RCS organization will impose different
requirements on the executive, a common skeleton can provide the basis for
the entire series of RCS executives since the same applications programs will
be performed on all RCS's.

The executive skeleton consists of four distinct modules, each
providing one of the four basic facilities required in an executive for an
avionics computer. The four modules are the scheduler, the input-output
driver, the interrupt processor, and the machine error handler. Each of the
modules is described in the following subsections, followed by a discussion
of the interaction between pairs of the modules. A block diagram of the
executive skeleton is shown in Figure 3,2-1.

- 3-2

TIME INPUT - QUTPUT
JINTERRUPTS ENTERRUPTS;

SCHEDULER INPUT - OUTPUT
DRIVER
SCHZDULE PROVIDE
APPLICATIONS ANPUT-OUTPUT
PROGRAMS ROUTINES
|)
Z z
o =
; :
E z
2=
Z o x e
o~ -8 \I: Olo
2|3 | 2 &
Ol e Sl
Z <
B >
-
2 G
\ |
ER PROGRAM ERRQOR
- ETC. INTERRUPTS _
INTERRUPTS
INTERRUPT MACHINE ERROR
PROCESSOR - PROGRAM SUSPENSICON HANDLER
(& TERMINATION)
PROCESS EXECUTIVE SOF TWARE RECOVER FROM
RETURN AND 2D OR MACHINE AND
EXCEPTION ~] PROGRAM ERRORS
INTERRUPTS DETECTION
FIGURE 3.2-1 THE EXECUTIVE MODULES USE INTERMODULE CALLS FOR

SERVICES WHICH ARE REQUIRED BY ONE
MODULE BUT PROVIDED BY ANOTHER

3.2.1 Scheduler

The scheduler provides for pericdic execution of programs in the
computer, Most applications programs run periodically, although the frequency
and duration of each program may be different. Collectively, the applications
programs must deliver correct periodic outputs at the time required. The
scheduler insures that each program will be run when required.

The flight of an aircraft can be partitioned into phases and modes.
Phases of flight include takeoff, ascent, cruise, descent, landing, etc. The
modes of flight include manual and autopilot. The subset of active programs
(out of the set of all loaded programs) is determined by the phase and mode
of the flight. Whenever a phase or mode change is made, the subset of active
programs may change.

Once the subset of active programs is determined, the programs are
scheduled for periodic actuation. Tables and queues are maintained to
accomplish the scheduling function. A priority is also maintained for each
active program to determine whether an asynchroncus program activation
request will be honored when it occurs.

3.2.2 Input-Qutput Driver

The input-output driver provides the external communication capa-
bility for the other executive modules and the applications programs.
Although input-output could be performed directly by the requesting program
in many cases, the use of the executive skeleton as the basis for additional
fault-tolerant features requires that all input and output be provided
by this module of the executive. Both aircraft-computer communication and
intercomputer communication are provided. The former is characterized by
primarily one-word (single) data transfers while the latter is characterized
by primarily multi-word (block) data transfer.

The aircraft-computer communication consists of sensor and control
panel inputs and actuator and display console outputs. These communications
generally require only one computer word (or a part of a word) to hold all
the data. Also, these communications usually require no waiting for the
device. Thus, single word input/output is usually accomplished immediately
and no further action is required after returning to the calling program.

The intercomputer communication consists of data to be verified or
memory words to be loaded. When verification data are exchanged for checking

3-4

or voting, all pertinent state vector information must be communicated.
When a recovery is being attempted through use of a memory reload, a
significant portion of the memory may be affected, and thus, the volume

of data may be rather large. Furthermore, the communication channel (e.q.,
bus) may not be immediately available. Thus, block data transfers are _
usually queued when the routine is called but completed as the channel
becomes available. The completion of the data transfer may set a status
variable or actuate a dormant program.

3.2.3 Interrupt Processor

The interrupt processor services all interrupts which are not handled
directly by other executive modules. Interrupts processed by this module
include executive requests and program exception interrupts such as fixed-
point overflow, floating-point exponent overflow, and division by zero. This
module also provides program suspension and resumption routines.

The executive request interrupt is processed by this module because
several different requests are muyltiplexed into the one interrupt. After
decoding the parameter of the request, the interrubt processor invokes the
program which will process the specific request which was received. The
program may be in another module or in the same module. After the request
has been processed, control returns to the program which made the request
unTess the request resulted in a schedu]ing alteration.

The program exception interrupts are often maskable under program
control. When one of them occurs, the interrupt processor first determines
whether or not the interrupt will have any effect. If the interrupt is to
be ignored, the program is resumed immediately. If an algorithm is specified
(e.g., setting the result to zero for floating-point exponent underfiow), it
is applied immediately and the program is resumed. If the program is to be
terminated because of the condition, control is transfered to the scheduler.

The program suspension and resumption routines are required for
saving and restoring the machine state when an interrupt occurs. Some
machines provide alternate register sets for the executive, thus minimizing
the functions of this routine. However, executive pointers, tables, and
queues must always be updated when switching programs.

3-5

Machine Error Handler

The machine error handler processes all program and machine errors
which occur. FEven computers which are not designed with fault tolerance
as a design goal usually include address checks, memory parity checks, and
other self-checks. Some computers include self-test hardware which can be
used when an error is indicated. This module utilizes whichever hardware
features are available on the particular machine, combined with software,
to act upon any errors which occur.

Software errors (e.g., address out-of-range) which occur indicate
that either the program contains a design error or the program or its data
has been affected by a fault. Since programs used in aircraft applications
must be thoroughly verified before being put into use, the assumption must
be made that a hardware fault has occurred. (This decision could be modified
for program checkout on the hardware.) Thus, whenever a software error
occurs, the same procedure is followed as when a hardware error occurs.

Hardware errors (e.g., memory parity check) indicate that a failure
has occurred in the hardware. The resolution of the failure depends on the
fault-tolerance capability provided in the computer. If self-test is avail-
able, the module may be able to determine the error and reconfigure to
eliminate the error or set an indicator to cause erroneous outputs to be
ignored. If only minimal fault tolerance is provided, a degraded mode of
operation may still be possible.

3.2.5 Interaction

Fach of the modules of the executive skeleton implements a logi-
cally complete and distinct set of functions. Every one of the modules,
however, requires functions in at least one other module. Thus, executive
modules communicate with each other just as applications programs communicate
with the executive modules. A brief discussion of the interaction follows.
The interaction is indicated on the block diagram of the executive skeleton
shown in Figure 3.2-1.

The scheduler is activated primarily by the time interrupts. The
scheduler is also used by the interrupt processor to activate and terminate
programs as phase and mode changes occur. It uses the program suspension
and resumption routines in the interrupt processor.

3-6

The input-output driver is activated primarily by input-output
interrupts. The interrupt processor passes applications programs input-output
requests to this module. The machine error handler can also request this
module to reload the memory. This module uses the program suspension and
resumption routines in the interrupt processor.

The interrupt processor is activated primarily by the executive
request and’program exception interrupts. It is also used by a1l other execu-
tive modules for program suspension and resumption. It uses the scheduler to
activate and terminate programs and passes input-output executive requests
to the input-output driver.

The machine error handler is activated‘by hardware and software
error detection mechanisms. This module uses the interrupt processor for
program suspension and the input-output driver for memory reloading.

3.3 SCHEDULING MECHANISMS

The choice of a scheduling mechanism for an executive is the single
most important decision in the design. The selection of the scheduling mech-
- anism affects other modules in various degrees. For the avionics application,
there exists a compiete spectrum of executive scheduling mechanisms ranging
from totally synchronous to constrained asynchronous. A study has been made
[TSOU 73] which investigated five distinct scheduling mechanisms and their
applicability to the space shuttle and space tug, applications with computa-
tional requirements not too different from those assumed for this study. The
five mechanisms are investigated in detail and compared to each other as candi-
dates for the executives in various onboard computers. The mechanisms are
described here in sufficient detail to permit investigation of the effects on
simulation of selecting one schedu]ing'mechanism over another for a general
avionics application, '

The scheduling mechanisms considered can be differentiated‘by the
following three characteristics:

1. Fixed vs variable processing time intervals;
2. Fixed vs variable task execution order;

- 3. Polled vs interrupt-driven aperiodic event registration.

The synchronous -executive, while limited in terms of flexibility
and growth, is conceptually very simple and its behavior is completely pre-
dictable. The synchronous mechanism utilizes fixed time intervals, fixed
execution order, and polled aperiodic event registration. The constrained-
asynchronous mechanism is the most flexible scheduling mechanism usable for
an avionics application. The constrained-asynchronous executive schedules
tasks on a demand basis. It thus provides a more flexible structure which
permits growth to be achieved more easily. This mechanism utilizes variable
processing intervals, variable task execution order, and interrupt registra-
tion of aperiodic events (even during periodic processing). There are a
number of intermediate designs which utilize various combinations of the
above approaches. These are the synchronous-with-asynchronous-overlay, hybrid,
and hybrid-with-external-interrupt mechanisms provide more and more fiexibi]ity.
It is not sufficient to differentiate between these scheduling mechanisms by
any one characteristic alone; all characteristics must be considered when
comparing the mechanisms. A description of each of the five scheduling
mechanisms being considered follows. Typical time lines for the various
mechanisms are jliustrated in Figure 3.3-1. A comparison of characteristics’
of the mechanisms is given in Figure 3.3-2.

3.3.1 Synchronous

The synchronous scheduling mechanism divides processing time into
fixed-Tength slots. Two types of computations are distinguished: minor-cycle
and major-cycle. Minor cycle computations are high-frequency tasks while
major cycle computations are low-frequency tasks, often of longer duration
than minor cycle tasks. The minor and major cycle computations are allocated
to fixed time slots, arranged to form one complete cycle for all major cycle
tasks. Each time slot is activated by an external interrupt. Some idle time
usually exists at the end of each time slot.

The minor cycle tasks may be scheduled in one of two ways. Either
the beginning of every time slot is used for minor cyc1e tasks or alterpate

time slots are devoted entirely to minor cycle tasks. The major cycle tasks
are performed, one per time slot, either in the time remaining after minor
cycle computations in the first case or in the slots between minor cycle
computations in the second case. Two types of major cycle tasks exist:

3-8

6-E

Synchronous

Synchronous With
Asynchronous Overlay

Hybrid

Hybrid With

External Interrupts

Constrained

Asynchronous

i J 1 l o | | | | I

m L m L m L m L im L m i m L m L
| ———— | - | - I - |] - | ———] i |
m L m L m {LIJ] m LimL|I miIlL|m! L m |L
| — | - |] - | - et | | ——a— | e |
AWW,/P\
m L m |t]m{Li m|L{mio]I m I[LmIL|{I]m|I|m|L
LEGEND
m: Minor Cycle Computations L: List-Processed Computations
M,;. Unconditional Major Cycle I+ Interrupts (Except Real-Time)

Ta 1 e : 1: Minor Cycie or Periodic Computation Initiation
M. Conditional Mu;or Cycle Cnmputc.rtmns ~-: Varible Boundary
My : Aperiodic Major Cycle Computations

FIGURE 3.3-1 EXECUTIVE SCHEDULING MECHANISM TYPICAL TIME LINES

unconditional and conditional. The unconditional major cycle tasks are
executed every time their time slot occurs. The conditional major cycle
tasks are performed only if specified conditions are met.

3.3.2 Synchronous with Asynchronous Overlay

The synchronous-with-asynchronous-overlay scheduling mechanism
eliminates the idle time associated with conditional major cycle tasks which
are not executed in the synchronous scheduling mechanism. With the overlay,
unconditional major cycle tasks are allocated fixed slots as before. Condi-
tional tasks, however, are scheduled by a master controller during time slots
which are allocated to it. 1In this way, conditional major cycle tasks are
executed on a priority basis rather than having to wait until the fixed time
slot arrives for processing. The synchronous-with-asynchronous-overlay
scheduling mechanism is the first to schedule any tasks other than by a fixed
time slot.

3.3.3 Hybrid

The hybrid scheduling mechanism combines the minor-cycle scheduling
of the synchronous scheduling mechanism with the list processing of the
asynchronous mechanism. An external interrupt is used to initiate the minor
cycle computations. The minor cycle tasks include a subsystem scanner which
registers events required to service subsystems requesting attention. As soon
as the minor cycle tasks are completed, the 1ist processing (asynchronous)
mechanism vregains control. Aperiodic tasks may be registered by the subsystem
scanner or by other aperiodic tasks. The hybrid scheduling mechanism is the
first to use the 1ist processing mechanism which schedules aperiodic tasks and
the first to have variable minor cycle processing times.

3.3.4 Hybrid with External Interrupts

The hybrid-with-external-interrupts scheduling mechanism replaces
the subsystem scanner, in the minor cycle tasks of the hybrid mechanism, with
_1nterrupts which are enabled during the asynchronous processing. The hybrid-
with-external-interrupts scheduling mechanism is the first to use any interrupts
other than a real-time interrupt which initiate minor cycle computations.

LL~-€

. Hybrid
\ Scheduling Mechanism . Synsll';:gnous e v;ith : Constrained
Synchronous |Asynchronous| Hybrid xternd
Characteristic \ m Bveﬂw * Interrupts |Asynchronous
. . ' . ‘ . Fixed/ Fixed/ R
Processing Time Intervals Fixed Fixed Variable Variable Variable
e ' . Fixed/ Fixed/ Fixed/ :
Task Execution Order Fixed Variable Variable Variable Variable
Cycle: Position for Periodic . . .
Computations Fixed Fixed Fixed Fixed Variable
Cycle Position for Aperiodic Fixed Fixed/ Variable Variable Variable
Computations ' Variable |
Aperiodic Event Registration Polled Polled Polled interrupt Interrupt
Idle Time Distribution Dispersed Dispersed . Concentrqted Concentrated | Concentrated

FIGURE 3.3-2 COMPARISON OF EXECUTIVE SCHEDULING MECHANISMS

3.3.5 Constrained Asychronous

The constrained-asynchronous scheduling mechanism is the most
flexible which could be used in an avionics application. The constraints
applied include required precise, periodic computations; debugged, cooperating
programs; and a minimum number of interrupts. When this scheduling mechanism
is ﬁsed, interrupts are enabled most of the time. The tasks are scheduled
using a cyclic Tist which contains entries such as interrupt-scheduled tasks,
studies, queues, and ordered 1ists. A real-time interrupt initiates a
special task which processes the high-frequency tasks which are on a special
ordered 1ist. The constrained asynchronous scheduling mechanism is the only
one to allow interrupts at almost all times, even during the periodic high-
frequency computations.

3.3.6 Comparison and Contrast

The five executive scheduling mechanisms which are being considered
here range from the totally synchronous mechanism to the constrained asynchronous
mechanism with three other designs between. The synchronous mechanism is the
least flexible but easiest to verify. All computations are scheduled at a
fixed time and are limited to a specified amount of processing time. No
asynchronous processing is allowed and conditional tasks are allocated time
even if they are not run. The synchronous-with-asynchronous-overlay mechanism
improves on this by allocating some of the time slots to aperiodic event
scheduling. Thus tasks which are conditional can be scheduied only when the
conditions exist which as required for processing. The hybrid mechanism
goes one step further by allocating all non-minor-cycle time to asynchronous
scheduling. This is the first use of the 1ist-processing algorithms employed
in the asynchronous mechanism. The hybrid-with-external-interrupts mechanism
uses interrupts to register aperiodic events rather than the polling mechanism
used in the other three mechanisms. The asynchronous mechanism allows interrupts
even during periodic events. A cyclic 1ist is used to schedule tasks. Periodic
tasks are activated by a high-priority interrupt.

Thus it can be seen that the scheduling mechanisms considered range
from the synchronous in which everything is fixed to the constrained asynchronous
where everything is variable. The synchronous mechanism is the easiest to verify

because everything is fixed. As more asynchronism is introduced, verification
becomes more and more difficult because more and more variability. The asynchro-
ous mechanism, in which almost everything is variable, can never be totally
verified because the number of combinations of events is very large. All that
can be done is to test all branches in a reasonable number of ways.

The choice of an executive scheduling mechanism is made on the basis
of the environment, the machine capabilities, and the applications programs
requirements. Once the choice of an executive scheduling mechanism is made,
the other portions of the executive can be considered.

3.4 ADAPTABILITY

Adaptability is an important design goal for the executive. This
goal can be interpreted in two different contexts: configuration adaptability
and scheduling adaptability. Configuration adaptability is the ability to adapt
to any configuration considered by the RCS study. Each different configuration
imposes a s]ight1y different set of reguirements upon the executive although
each configuration accomplishes the same tasks for the avionics environment
in which it resides. Thus adaptations of the same executive skeleton should
provide executives for all configurations. Scheduling adaptability is the
ability to use any scheduling mechanism from totally synchronous to constrained
asynchronous. The synchronous scheduling mechanism implements a strictly fixed
time and order for task processing while the constrained asynchronous scheduling
mechanism permits demand scheduling except for strictly-periodic, high-frequency
events.

The executive skeleton described in this section provides both
configuration adaptability and scheduling adaptability. The same basic set
of four modules (schedﬁ]er, input-output driver, interrupt processor, and
machine error handler) is used for all executives. Additional modules and/or
enhancement of the basic four modules are provided to satisfy the requirements
imposed by the various configurations. The various scheduling mechanisms can
be implemented internally within the scheduler module with minor changes in
the interrupt handler module. It should be noted that even for the totally
synchronous executive, machine error conditions must be processed immediately
when they occur,

The RCS configurations being considered by this study are all
to be used in an avionics environment. The results of the study, however,
should be usable for other environments such as spacecraft, process control,
etc. Thus, although the executive is designed to support an avionics environ-
ment, it is not constrained to that environment. Even in the avionics
environment, a wide range of applications exists. Furthermore, the purpose
of undertaking the design of an executive is to provide a model for the
simulator which is being written. Thus the level of design of the executive
is that which is necessary to support a model for the simulator. The level
which has been chosen, the module level, provides complete generality while
still specifying the structure and functions of the executive.

3.5 SOFTWARE STRUCTURE AND FAULT-TOLERANCE IMPLEMENTATION

3.5.1 Software Structure Considerations for a Duplex System

It is important to study the impact of the executive scheduling on
a duplex system since adaptive configurations are able to degrade to duplex.

The structure of the software used in a duplex computer configura-
tion has an effect on the probability of recovery from a fault given detection
of an error. The software features which must be investigated to determine
the effects include the executive scheduling mechanism, a typical cycle of
minor-and major-cycle computations, redundancy requirements, and tradeoffs
which must be made between conflicting reguirements.

3.5.1.1 Executive Scheduling Mechanisms

Evaluation of scheduling mechanisms which could be used in
a duplex computer configuration leads to a dichotomy of the mechanisms
presented in Section 3.3. The breakpoint is the inclusion of an
asynchronous mechanism which does not require segmenting of major cycle
computations into pieces which can be completed between Real Time
Interrupts (RTI's). The synchronous and synchronous-with-asynchronous -
overlay mechanisms do require such segmentation. These mecﬁanisms
will be called synchronous-type mechanisms in this discussion. The
hybrid, hybrid-with-external-interrupts, and constrained-asynchronous
mechanisms do not require segmentation of major-cycle computations and
will be called asynchronous-type mechanisms.

3-14

The requirement that all programs running on a duplex
system must incorporate rollback has a significant effect on the
choice of a scheduling mechanism. For minor-cycle computations, a
rollback point can be established at the end of each iteration. If
new data are input immediately prior to the next computation cycle,
the input mechanism must be protected separately. In any case, it is
assummed that the previous state vector and the new input data are
correct and available at the beginning of a minor-cycle computation.
If the minor cycle completes successfully, a new state vector is stored
and the major-cycle computations are performed. If an error occurs, the
minor-cycle computations can be repeated, possibly at a cost of delaying
the major-cycle computations. Thus the rollback structure of minor-cycle
computations corresponds with the scheduling of the computations for any
of the scheduling mechanisms (except for the constrained-asynchronous
mechanism where minor-cycle computations can be interrupted briefly).

For major-cycie computations, the choice of a synchronous-type
or asynchronous-type scheduling mechanism has significant conséquences.
If a synchronous-type scheduling mechanism is chosen, then the major-cycle
computations can have a rollback point at the end of each segment. At the
end of a segment the state vector is known and is usually reasonably small.
Each segment of a major-cycle computation is similar to the minor-cycle
computations in that the rollback structure and the scheduling of the
segment correspond. ' If an asynchronous-type scheduling mechanism is
chosen, the situation is entirely different. Rollback points will not
correspond temporally to processing segments. Zero, one, or several
rollback points may be established during one computation period.
Furthermore, there may not be time to complete a rollback before another
minor-cycle is initiated. A rollback point could be forced by storing
every variable the program uses when an RTI occurs at a cost of time and
memory .

The interaction between the minor-cycle computations and the
major-cycle computations dependson the choice of a scheduling mechanism
and comparison period for major-cycle computations. If a synchronous-
type scheduling mechanism is chosen, the rollback structure corresponds

3-15

to the scheduling so each execution segment is independently protected

by its own rollback mechanism. If an asynchronous-type scheduling
mechanism is chosen, a fault can cause a rollback in more than one program
segment. If a fault occurs during a major-cycle computation which is
interrupted by a minor-cycle computation, the minor-cycle computation can
get an error, causing rollback and then the major-cycle computation can
get an error when it reaches a rollback point, resulting in another rollback.
The comparison period for major-cycle computation determines the length

of rollbacks. 'If a comparison is made only when an output occurs, the
entire computation must be repeated if an error occurs. If rollback’
points with comparisons are inserted at a reasonable number of places in
each major-cycle computation, errors will be caught sooner and rollbacks
will be shorter. Also, the chance of an error affecting both a minor

and major cycle is reduced if more rollback points are used. However,

the time required for the complete major-cycle computation is increased.

3.5.1.2 Typical Computational Cycle

A typical computational cycle consists. of all processing
between two consecutive Real Time Interrupts (RTI's). Immediately
following an RTI, minor-cycle processing is performed. After the
minor-cycle processing is completed, the remaining time before the next
RTI is used for major-cycle processing.

The minor-cycle processing consists of high-frequency
activities which must be performed regularly. These activities include
input, calculation, checking, and output of high-frequency control
information and memory copy when it is active. The input, calculation,
checking, and output must be protected by rollbacks. Furthermore, the
original input should by used again if & rollback occurs. A way of
accomplishing this is to use three minor-cycle periods for a complete
iteration. A minor cycle would begin by issuing the output data
generated by the calculations during the last minor cycle. Calculations
would then be performed on input data obtained during the Tast minor
cycle with checking of the results. Then input would be obtained for
the next minor cycle. Finally, a rollback point would be established
for all minor-cycle processing up to that point.

3-16

The last portion of a minor cycle is devoted to memory copy
when it is active. If the other computer has suffered a suspected
memory failure, and if memory copy is considered a viable option for
the application, the memory of one computer can be copied to the other.
When the memory copy is active, however, the system is running in the
simplex mode, since one computer contains a fault. Thus no rollback
is included in the programs which implement memory copy. A fault in
the sending computer during memory copy would constitute a second fault,
while another fault in the receiving computer would not change its
faulty status. During each minor cycle, as many words as possible would
be transmitted, subject to the limitation that the multiplexed bus must
be available for input and output during the next minor cycle.

When the minor-cycle processing is successfully completed,
major-cycle processing is initiated or resumed, depending on the scheduling
mechanism. The major cycle continues until it completed or is terminated

by another RTI, again depending on the scheduling mechanism.
Major-cycle processing consists of Tow-frequency activities which

occur regularly and aperjodic activities which respond to external

or internal stimuli. If no other major-cycle processing is required,
self-test is run. The self-test may also be scheduled as one of the
regular major-cycle activities to insure a minimum amount of self-test.
Major-cycle computations tend to be Tonger than minor-cycle computations.
Major-cycle computations would be likely to have several rollback
points in a single task. As an absolute minimum, rollback points would
be required after input, calculation and output. The rollback point
after input would protect the input. More than one rollback point
during calculation, with checking, would prevent completely restarting
the task in case an error occurred. Finally, a rollback point after
output would prevent repeated outputs.

The rollback structure of a period between two RTI's has
three distinct sections. During the minor-cycle processing preceding
the memory copy, all computations can be protected by a single rollback
point at the end. Once this rollback point is establiished, the second

section, the memory copy, is initiated if it is active. As stated above,
the memory copy is not protected by rollback. Finally, the major-cycle
computations each have one or more rollback points which may or may not
correspond to RTI intervals, depending on the scheduling mechanism.

3.5.1.3 Redundancy Requirements

The use of duplex redundancy imposes three requirements on
the hardware and software which are not reqdired in a simplex system.
First, increased memory is needed for state vector storage and comparison
programs. Second, increased execution speed is required for time to
do the same function. Third, rollback must be included in the software.
In addition to these three requirements, reconfiguration mechanisms must
be provided if the duplex operation is part of an adaptive system which
degrades from TMR to dupliex to simplex.

The increased memory required for duplex redundancy is used
to store the state vectors at program rollback points and for programs
which compare state vectors control reconfiguration. The state vectors
must be saved by double buffering or an equivalent technique which
preserves the information from a previous roliback point until a new ane
is established. Programs are also reguired to store the state vector and
to reload it from the same area when a rollback is required. These programs
may be executivg routines provided for use by application programs or code
in each of the application programs themselves. It is preferable for the code
to exist in a set of executive routines to minimize duplication and to provide

for adaptive redundancy by reconfiguration.

The increased speed is reguired to provide time for storing
and comparing the state vectors. The time which is required to store
the state vectors depends on the length of each state vector which is
stored and the frequency at which they are stored. Increased time is
also needed to compare the state vectors when they are stored and/or
compare outputs before they are issued to aircraft actuators. When
a failure occurs, time is needed to reload the state vector, repeat the
computation which was in progress when the error occurred.

Roliback capability must be provided for programs running
on a duplex computer configuration in order to determine the faulty
computer when an error occurs. When the results of the two computers
differ, each must rerun the program first to check for a transient error.
If the faulty computer cannot be determined, a self-test must be used.
When the faulty computer is determined, it must be removed from actively
controlling the aircraft. Then the remaining good computer must continue

in the simplex mode.

An extra redundancy requirement is imposed if adaptive
redundancy is being used. Some additional speed and memory will be
required for reconfiguration. The system 1ife will be maximized by
progressively degrading from TMR to duplex to simplex as failures occur.
If a failure is due to memory damage, memory copy may be used to correct
the fault and upgrade to a mode using one more computer. Changing
modes, however, requires special considerations. Adaptive TMR requires
rollahead while duplex requires rollback. The same code can be used to
save and compare the state vectors. The primary difference is whether
the segment in which the error occurred is repeated or the state vector
is corrected and the program continues.

3.5.1.4 Tradeoffs

The three major tradeoffs which must be considered when deter-
mining the value of p for a duplex configuration are the scheduTing mech-"~
anism, the frequency of rollback points, and the lengths of the state
vectors. In all cases, the software influences the v2w2 factor (see Section
5.5.1), the probability of correct recovery given detection and correct
diagnosis of the faulty unit. A summary of the tradéoffs and the effects on
VoW, is presented in Table 3.5-1.

The choice of a scheduling mechanism has a significant effect on
Vo, If a synchronous scheduling mechanism is used, the rollback segments
can be established at the end of each time slot. Furthermore, a synchronous
scheduling mechanism has idle time distributed to a part of each time slot.
Thus the synchronous scheduling will yield a higher value of VoW, since
recovery will be faster (at most one rollback series is needed per error)
and the time is available for immediate rollback without delaying other
computations (due to the distributed idle time).

3-19

‘ITEM LARGER VoW,

SCHEDUL ING MECHANISM SYNCHRONOQUS

Faster Recovery
Distributed idie Time

Number of Rollback Points More
Length of Rollback Segments, Shorter

Faster Recovery

State Vegetor Length Shorter
Faster

SMALLER VoW,

ASYNCHRONOUS

Slower Recovery
Concatenated Idle Time

lL.ess

Longer

Slower Recovery

Longer
Slower

TABLE 3.5-1 SOFTWARE EFFECTS ON vow,

3-20

The freqdency of rollback points also affects VoW, The greater
the number of rollback points which are inserted, the faster the recovery
will be when a rollback is required. At the extreme, the length of the
state vector and the time required to store it can become significant, but
in most cases this is small relative to the processing time of the rollback
segment. A greater number of rollback points also increases VoW, when
transient duration is considered. If a transient is of relatively-long
duration, more than one rollback may be required before the transient fault
disappears. The shorter the length of the rollback segment (greater the
number of rollbacks), the faster the successful one will complete.

Finally, the lengths of the state vectors affects VoW, in two
ways. Shorter state vectors require:-less memory which results in a larger
VoW, value. Also, the shorter the state vector, the shorter the time needed
to save and restore it, resulting in greater probability of recovery in time.

3.5.2 Software Structure Considerations for a TMR System

Although this section considers the TMR case, its conclusions ‘
are also valid for 4-MR and 5-MR systems.

This section considers for TMR the same topics which were con-
sidered for the duplex configuration in Sectioﬁ 3.5.7. The probability of
recovery given detection, VoW,s is used-only in adaptive TMR when running
in the duplex mode. The topics discussed in this section are executive
scheduling mechanisms, minor-and major-cycle computational requirements,
redundancy requirements, and tradeoffs between conflicting requirements.

3.5.2.1 Executive Scheduling Mechanisms

The executive scheduling mechanisms which could be used in a TMR
configuration again are separated into the synchronous-type which require
segmentation of major-cycle computations into pieces which can be completed
between Real Time Interrupts (RTI's) and the asynchronous-type which do not
require segmentation. Programs running on an adaptive TMR configuration,
which can degrade to duplex, require rollback segmentation. When the system
is used in the TMR mode, rollahead is used when an error occurs, since a
majority vote is possible. When the system degrades to the duplex mode,
rollback is used when an error occurs,

3-21

For minor-cycle processing, a rollahead/rollback point can
be established at the end of the minor-cycle computation period for
any of the scheduling mechanisms. For major-cycle processing, however,
rollahead/rollback points will correspond temporally to processing
segments only if a synchronous-type scheduling mechanism is used. If
an asynchronous-type scheduling mechanism is used, zero, one, or several
rollahead/rollback points may be established during one computation period.

If a synchronous scheduling mechanism is used, an error
which occurs will only affect the active processing, since rollahead/
rollback points will be established at the end of each processing segment.
If an asynchronous-type scheduling mechanism is used, however, an error
may affect an interrupted major-cycle computation as well as a minor-cycle
computation. In the TMR configuration no major problem exists when this
occurs, since rollahead requirements are not critical in comparison to
rollback requirements. The time required to update the state vector is
small relative to the time needed to repeat a program segment.

3.5.2.2 Typical Computational Cycle

The structure of a typical computational cycle, which consists
of all the processing between two Real Time Interrupts (RTI's), does not
vary with configuration changes. Minor-cycle processing always immediately
follows the RTI, after which the major-cycle processing uses the remaining
time before the next RTI.

Although the structure of a typical computational cycle
is more dependent on the scheduling mechanism used than on the amount
of redundancy the system is using {TMR, duplex, etc.), the details of the
rollahead/rollback and reconfiguration code are different. In the TMR
configuration, the faulty computer can be identified by a majority vote.

A rollahead is used first to attempt to correct the faulty computer.

If this fails, a memory copy can be tried. In any case, no significant
amount of time is Tost while applying these procedures. The two computers
which do not have any errors continue to perform the required computations
while also attempting to correct the faulty computer.

3-22

3.5.2.3 Redundancy Regquirements

Redundancy requirements for TMR include memory, speed and
rollahead. Increased memory is required for programs which compare
the state vectors at rollahead points. Increased execution speed is
required for state vector correction. Rollahead is used to correct a
faulty state vector when it is damaged by an error. The use of adaptive
TMR also requires reconfiguration mechanisms which can change the system
to a duplex mode of operation and back to TMR.

The only requirement for additional memory in a TMR configuration
over simplex is for the checking and reconfiguration programs. One
important function is the comparison of state vectors at the end of a
rollahead segment. If an error is detected, the erroneous state vectors
corrected by a majority vote and computation continues (rollahead).

If adaptive TMR is used, provisions must also be incliuded for reconfiguring
to duplex mode when an error is detected. The system will run in the
duplex mode while attempting to restore the faulty computer to operational
status. .If the faulty computer recovers, the TMR mode of operation can

be resumed, otherwise duplex operation continues.

A moderate speed increase is needed for state vector
comparison, rollahead and reconfiguration if used. The state vector
comparisen is a short task. If an error is detected, the state vector
can be corrected by using a majority vote among the three computers,
Although this task is also short, it is essential that it be performed
rapidly, since all system computation is suspended during rollahead.
The reconfiguration process also must be rapid when it is required,
since no other activity may be 'in progress during reconfiguration.

The incorporation of rollahead in programs running on a
TMR configuration provides the capability of restoring a faulty
computer to service when a transient error occurs. When an error is
detected in a state vector, the state vectors in.the two good computers
can be used to correct the state vector in the faulty computer. If an

error remains after rollahead, the system can be reconfigured to duplex
\

3-23

while the memory of the faulty computer is reloaded. If the error
is removed, the system can again be reconfigured to TMR.

3.5.2.4 Tradeoffs

The two major tradeoffs which must be considered for an
adaptive TMR configuration are rollahead/rollback structure and the
memory copy option.

There are essentially four different TMR configurations
which can be considered, each increasing the recovery mechanisms
provided. The basic configuration is classical TMR with no recovery -
for a faulty machine. Some improvement can be expected if rollback
is included in each of the computers with comparison with the state
vector of the other machines. A better configuration includes rollahead
rather than rollback so that an erroneous state vector is corrected by
a majority vote and no time is lost for recovery. Finally, the inclusion
of memory copy would permit correcting damaged memory words in a computer.
A1 configurations except the classical TMR can be adaptive so that they
degrade to duplex and then simplex as permanent failures occur.

The use of adaptive TMR requires that programs include
rollback capability for use when running in the duplex mode. If
rollback rather than rollahead is used for TMR, the same mechanisms can
be used for duplex and TMR operation, The availability of the third
computer, however, provides a voting capability which can be used to
eliminate the time penalty imposed by rollback. The cost is in extra
memory for the rollahead mechanism and extra complexity which is introduced
into programs which must include provisions for using either rollahead or
rollback.

The inclusion of a memory copy capability requires time,
memovy, and complexity. Time must be provided during each minor cycle
when memory copy is active to transmit words between computers.
Memory is required for buffer space and for programs which accomplish
the data transfer. Also, additional reconfiguration complexity is
introduced. The advantage of using memory copy, however, is that a
computer in which a transient fault damages memory may be corrected

3-24

and the configuration returnred to TMR, resulting in correction of errors
by rollahead rather than rollback. Thus, there will be three good
computers operating in case a fault occurs in one of the computers
which did not have the initial memory fault.

The same considerations which were discussed in Section
3.5.1 pertaining to effects of software on p are also applicable to
adaptive TMR degraded to the-duplex mode. As can be seen from Figure
3.5-1, all software considerations ultimately lead to a consideration
of the recovery time. With three computers running, at least two of
which are good, recovery is immediate by voting, thus software
considerations are not involved until the system degrades to duplex

operation.

3-25

THIS PAGE INTENTIONALLY LEFT BLANK

3-26

MEASURES OF FAULT-TOLERANCE
4.1 THE CONCEPT OF FAULT-TOLERANCE

4.1.1 The Reliability Problem for Computers

The reliability problem in computer operation is caused by
imperfections in the physical implementation of the Togic structure.
Reliability theory defines the reliability of a system as the probability
of correct operation up to the "mission time" t=T, given that the system
was operating correctly at the “starting time" t=0. Computer systems are
a special case amohg all physical systems because in their case "correct
operation” means the correct execution of a set of programs, rather than
the continued functioning of a set of components of the system. It is the
purpose of this section to present a unified view of those aspects of computer
system design that are specifically directed toward the assurance of correct
program execution in the presence of physical imperfections (called faults)
in the compohents of the system. (AVIZ 72)

The following four criteria form an operational definition of
"correct execution of a set of programs:"

1. The programs and their data are not altered or halted
by faults;

2. The results of operations do not contain fault-caused
errors;

3. The execution time of each program does not exceed a
specified limit;
4. The storage capacity that is available for each progfam‘

remains above a specified minimum value.

It is to be noted that the definition excludes the guestion of correctness
of the programs and of accuracy of the algorithms, both of which are separate
fields of study. ' ‘

The set of programs and data, the definitions of required operations,
the time 1imits for program execution, and the storage requirements are
specified by the users of the system. The goal of the designer is to raise

4-1

the system reliability (i.e., the probability of correct execution of

these proérams) to an acceptably high value, given that faults may occur
during execution. Such faults are caused by three classes of physical events
that affect the hardware:

1. Permanent failures of computer components;
2. Intermittent malfunctions of components;
3. External interference with computer operation.

When these events occur, they cause logic faults, defined as the deviations
of one or more logic variables within the computer system from their design-
specified values.

4.1.2 "Fault-Intolerant" Design_for Reliable Operation

There exist two complementary approaches that can be employed to
attain satisfactory reliability of computer systems. They are designated
as: 1) fault-intolerance, and 2) fault-tolerance, respectively.

Fault intolerance is an approach that aims to reduce the probability
of occurrence of the first fault during a specified time interval 0stsT to
an acceptably low value. In this approach the system is designed without
redundancy, and every compcnent of the system must function correctly in
order to assure correct program execution. The procedures which lead to the

attainment of "fault-intolerant" reliable systems are:

1. The most reliable components are seiected for the system
within the existing cost and performance constraints;

2. Proven techniques are employed for the interconnection of
components and assembly of subsystems;

3. The system is packaged to screen out the expected forms of
external interference;

4. Quantitative prediction of the system reliability is made on
the basis of known or predicted failure distributions and
rates for the components and interconnections.

In the "purely" fault-intolerant {non-redundant) design, the probability of
fault-free hardware operation is equated to the probability of correct program

4-2

execution. This design is characterized by the decision to invest all .
the reliability resources into procurement of high-reliability. components
and refinement of assembly and packaging techniques.

4.1.3 Design of "Fault-Tolerant" Systems

An alternative to the "purely" fault-intolerant approach is
offered by the use of various forms of redundancy. Known as fault-tolerance,
this is an approach that increases computer system reliability by the use
of design technigues that allow faults to occur without disrupting the con-
tinued correct execution of its programs. Fault-tolerance does not entirely
eliminate the need for reliable components; instead, it offers the option
of allocate part of the reliability resources to the use of redundancy. The
end goal of a fault-tolerant design is either: 1) a system reliability
prediction that cannot be attained by the purely fault-intolerant design; or
2) a system reliability prediction that matches the purely fault-intolerant

design at a lower overall cost of implementation.

A fault-tolerant computer system is defined as possessing the
following three attributes:

1. It consists of a set of components (hardware) and programs
(software);

2. It is initially free of design errors;

3. It executes its set of programs correctly in the presence
of faults.

The first attribute stresses the fact that the ability of a computer system
to continue operating correctly in the presence of faults depends not only
on the properties of the hardware, but also on the nature of the software--
both the system programs and the user (application) programs. For example,
the ability to recover from the errors caused by transient faults frequently
depends on special restart features incorporated in the system software as
well as on proper partitioning and state vector storage of user programs.

The second attribute requires that design errors be eliminated from

both hardware and software prior to the initiation of fault-tolerant computing.
Design errors are caused by errors in the translation of the original system

4-3

specifications into the operational forms. They are eliminated by validation

of the hardware and software designs prior to their operational use. Since

a complete a priori verification cannot yet be assured, computer systems also
need provisions to detect and trap various abnormal conditions during operation
which may be symptoms of remaining design errors. A completely fault-tolerant
operation is attained only when all design errors are eliminated from the system.

The third condition for fault-tolerant computing postulates correct
execution of the entire set of programs in the presence of faults. Program
errors that are caused by faults in the hardware can be avoided or corrected
by means of protective redundancy. Protective redundancy is introduced into

the computer system in three forms:
1. Additional hardware (hardware redundancy);
2. Additional programs (software redundancy);
3. Repetition of machine operations (time redundancy).

These redundant features would not be needed in a fault-free computer. Given
that faults will occur in the hardware, the redundant features provide a
fault-tolerant computing system, which carries out its programs correctly in

the presence of faults. Partial fault-tolerance ("graceful degradation")
results when one or more programs fail to satisfy criteria (1) or {2), and
also when some {or all) programs fail to satisfy criteria (3) or (4) for
correct execution (Paragraph 4.1.1).

Research results and design experience that have been accumulated
during the past decade show that the systematic introduction of protective
redundancy to provide fault-tolerance in a computer system can be accomplished
by the following design procedure.

1. The computational requirements are established and the
system architecture is specified with the initial assumption
that faults will not occur (the "fault-intolerant" design).

2. The classes of faults that are to be tolerated in the design
of (1) are identified, and the extent of tolerance is specified
for each class of faults.

3. The most cost-effective methods of protective redundancy
(time, hardware, software) are chosen to cover every class
of faults jdentified in (2), and the system architecture
is modified to incorporate the redundancy. _

4, Analytic or heuristic techniques are applied to estimate
the extent of fault-tolerance that is provided by the methods
of protective redundancy selected in (3).

5. Checkout methods are devised to test all redundancy features
specified in (3). Where applicable, fault-tolerance features
are extended to effect automatic maintenance of peripheral
systems that are.connected to or controlled by the computer.

Design experience has shown that the ihitia] results of task (4)
often lead back to (3), and that several iterations of (3) and (4) may be
necessary to arrive at a satisfactory fault-tolerant system architecture.
The measures applicable to task {4) are discussed in the next sectiaon,

4.2 QUANTITATIVE SPECIFICATION OF FAULT-TOLERANCE

4.2.1 Classification of Measures

There are three distinct quantitative measures that can be applied
to measure the fault-tolerance of a computer system. They are:

1. The Discrete Fault Tolerance d
2. The Reliability R(t)
3. The Survivability S(t)

The discrete fault to]erancé (DFT) d is a deterministic measure
that specifies how many faults of a given class can be tolerated by a computer
system or by a module of the system. The remaining two measures - reljability
R(t) and survivability S(t) - are probabilistic measures that predict the
probability of the system continuing its correct operation over a specified
time interval. The three measures are discussed in the following parts of this
section.

4-5

——

4.2.2 Discrete Fault Tolerance (DFT)

DFT is defined as the ability of a Module Set M to operate
correctly for at least d faults within the Module Set. The value of d
is an integer:

d(M)>1
in a fault-tolerant module set M.

The DFT measure anplies to permanent faults that are taken from
a specified Fault Set F. The fault set F must also be explicitly stated
for a complete DFT specification, i.e., we have:

d(M,F)=1

[t is important to note that DFT is not a function of time, i.e.,
the probability of continued correct operation is stated to be unity as long
as not more than d faults from the fault set F occur within the module set M.
In practical DFT implementations for which d{M,F)22 is specified it may be
necessary to specify a minimum time interval T between successive faults.

The interval is needed in the case of dynamically redundant systems that
require a recovery procedure to be completed before the next fault occurs.
This gives the specification

d{M,F,AT)22

In the case of d = 1 the value of AT is not important, since the. second fault
is assumed to lead to system failure.

As defined above, the DFT is a "worst case" specification of fault-
tolerance, since d refers to the most critical set of faults. Given that
faults other than the "critical faults" occur, the module set M is usually
able to survive more than d faults.

The Module Set M itself refers to a redundant set of modules, in
which a "module" may be an entire computer, a functional subsystem, a logic
package, or even a single physical component of the system. For example,

d = 1 applies to both a "quadded" set (M]) of diodes (Figure 2.2-1) and to a
"TMR" configuration (Mz) of compléte computers (Figure 2.2-2). In both cases
the fault set F includes independent failures of single units. The "unit"

is one diode in M], and one computer or one voter in MZ‘

4-6

DD

FIGURE 4.2-1 QUADDED DIODES, d=1.

—_— Computer 1

-] Computer 2

— Computer 3

FIGURE 4 .2-2 COMPUTERS IN TMR CONFIGURATION

A common extension of the DFT specification is a "fail-safe"
condition for the (d+1)§E-fau1t. This means that after d faults have
occurred, the next "worst case" fault will lTead to a systematic shutdown
of the function performed by the module set M. An example is the "FO-FO-FS"
specification, which translates to d=2 and a fail-safe condition for the
third fault in the worst possible location within the module set M. The .
set M is usually composed of system "modules" in this specification.

4,2,3 Reliability

The reliability R{t) also refers to a set F of permanent faults
that can occur in the hardware module set M. It is defined as the probability
that the set M will not experience a disabling hardware failure during a
specified "mission time" interval O<t<T. When a system is composed of several
module sets M, with reliability Ri(t), it is usually assumed that all module
sets must survive in order for the system to survive, i.e.,

n
R(t)sys = 1I=?1 R‘I(t)

for a system composed of n module sets M, (1<ign).

The current state of the art in reliability modeling (BOUR 71)
specifies the reliability of a module set Mi with respect to a fault set F
in terms of seven parameters as

A o9 *
R(M, ,F) & RS (Torsm)

where the parameters are defined as follows:

q 4 quota & number of modules within the set Mi required to survive
to time T

ne

. A) s
s = sparing = number of modules provided as spares within M;

=

c £ coverage 2 conditional probability [system recovers|module fails]

1=

f = discrete fault tolerance within one module of Mi

A2 power-on failure rate for one module of Mi

*
- The symbol & means "is defined-as." -
4-8

ne

power-off failure rate for one module of Mi

—
-

mission time

The analytic expressions for R(t) as a function of these parameters
are found in BOUR 71.

4.2.4 Survivability

It is known from experience that computer systems are also subject
to transient faults, which can terminate the correct execution of a set of
programs without causing a disabling hardware failure in the module set Mi'
Qur goal is to incorporate the survival probability with respect to the
occurrence of transient faults into one probabilistic measure of fault-
tolerance that also contains the reliability R(t) as defined in the preceding
section. This measure will be called the survivability S(t) of the module
set Mi'

In order to include transient faults, it is necessary to define a
transient fault set F' which is described by two properties: their arrival
characterization and their duration (AVIZ 72). Both properties are statistical
in their nature. The arrival time of a transient fault is a discrete random
variable, while its duration is described by a probability density function,
These concepts are illustrated by specific examples in Section 5.2.

In a dynamically redundant system both transient and permanent faults
require a two step fault-toTerance procedure:

1. The existence of the fault is detected.
2. A recovery action takes place.

The detection of permanent faults may be by means of periodic diagnosis
or by concurrent error-detection procedures; only the latter are suitable to
detect transient faults. In the present study we assume concurrent error detec-
tion by a comparison of the outputs of two or more copies of identical modules.
The same comparison procedure will detect errors caused by both transient and
permanent faults; however, at the time of detection it is not known which type
of fault has been detected.

The recovery procedure first must distinguish whether a permanent
or a transient fault has occurred, next the faulty module must be located

4-9

(identified). After fault location, an appropriate corrective action is
implemented. In the case of a transient fault, it consists of bringing the
affected module back into correct operation ("rollback" or "rollahead");

in the case of a permanent fault, it requires the continuing of correct opera-
tion without assistance from the failed module. The failed module may be
removed {e.g., in replacement, hybrid-redundant, adaptive systems), or it may
remain in the working moduie set (e.g., in TMR systems).

In the case of dynamically redundant systems, the time requirement
becomes an important parameter, We distinguish the following time intervals
that affect the success of recovery of a dynamically redundant system:

1. Time interval from the occurrence of the fault to its detection.
During this time the fault continues to affect the computation,
and errors may proliferate in the program being executed.

2. A specified time delay before the recovery action is initiated.
This delay is part of the recovery function; computing is
suspended during this time. The function of the delay is to
allow transient faults to end before recovery is initiated.

A fault that lasts longer will be treated as a permanent fault.

3. Time interval needed to execute the recovery action. At the
end of this interval the system is again in an operational state.
This state is identical to the pre-fault state after a successful
recovery from a transient. After a successful recovery from a
permanent fault, the system enters the specified "next state",
which depends on the redundancy technique employed.

The recovery action itself consists of two components:

1. The fault must be located by identifying the module that has
been affected by the fault.

2. The operational state must be re-established by an appropriate
technique.

Each component requires a time interval and has a certain probability
of unsuccessful execution. Furthermore, we note that certain complications
may occur after a transient fault has been detected: '

1. [Its duration may be long enough to overlap into the
recovery period and thus .create the false indication of

a permanent fault.

2. A second transient fault may occur before recovery is
complete., If it affects the same module, the effect is
the same as that of a "long" transient discussed above;
if it affects a different module, recovery may become
impossible. Both of these possibilities must be incorpo-
rated in a realistic model of a fault-tolerant system.

4.2.5 Quantitative Measures of Survivability

The preceding discussion has identified several functions that.
must be successfully executed before the system returns to its operational
state after a fault event. It is convenient to partition the probability

of successful system response to a fault into three components:

1. Detectability, denoted by u and defined as the probability
“that fault is detected, given that it occurs; '

2. Diagnostibility, denoted by v and defined as the probability
that the faulty module is correctly identified, given that
the fault has been detected;

3. Recoverability, denoted by w and defined as the probability
that the operational state is successfully re-established,
given that the fault has been located,

A time interval is associated with each one of the three measures.
It may be given either as a fixed value for a "worst case" upper bound, or as
a random variable with a specified density function.

In order to generate a reasonable estimate of the probabilities and
their associated times, we need some fundamental information about the hardware
organization and about the software of the fault-tolerant system.

The hardware information includes:
1. The description of the fault-detection mechanisms,

2. The description of the sequence of operational states after
permanent faults have been identified and recovery has succeeded;

4-11

3. The description of hardware aids for fault-location and
execution of recovery;

4, The description of inter-module communication paths that
may serve the purposes of fault-tolerance.

5. The identification of possible related failure modes (affecting
more than one module simultaneously) and their probabilities.

The software information includes:

1. Fault-tolerance featurés of the executive;

2. Nature of available test and diagnosis programs;
3. Scheduling mechanism for application programs;
4. Time available for recovery purposes;

5. Constraints on restarts (singular events, redl-time interrupt
scheme, etc.)

The probabilities and times for the survivability measures are
derived from the above information. Survivability then is determined either
by analytic modeling or by simulation, as described in the following Sections
5 and 6.

5.0 ANALYTIC MOBELING
5.1 MODELING APPROACH

5.1.1 General

Available reliability models consider all faults to be of a
permanent nature, but some faults are known to be transient. We direct our
analytic modeling effort toward the inclusion of transient faults.

A transient fault is a fault that disappears some time after its
arrival. During its stay it alters the contents of registers and/or memory
and/or disrupts the normal sequence of program execution. We recover from
-a transient that has passed by restoring altered data and/or program and
by bringing the recovering computer into synchronization with the fault-

free computers.

5.1.2 Solution Approach

We approach the problem by drawing a state diagram representing
the fault/recovery $tatus of the system. Each state represents the number
of fault-free units in the system and the level of fault recovery being
undertaken. The transitions between states represent the occurrence of
status changing events. The events are random in general so that the state
diagram is probabilistic in nature.

Such a state diagram is illustrated in Figure 5.1-1 for an
enhanced TMR configuration. Enhanced TMR differs from classical TMR in
that transient fault recovery is provided. The system begins a mission
time t=0 in the no-fault state, and we wish to find the probability of
arriving in the system failure state before‘t=T, the mission length. We
study this simple model to provide inéight into the inclusion of transient
faults into more complex models.

From the no-faults state a transient fault moves us into the
transient recovery state. From the transient recovery state one of three
things may occur:

1. Successful recovery -- go to No-Faults.

2. Transient mistaken for a permanent -- go to One Computer
Faulty.

3. Fault in a previously fault-free computer during recovery --
go to System Failure.

Note that a fault in a fault-free computer during recovery leaves a TMR
system with two faulty computers. We make the assumption that a TMR system
fails if two computers are faulty.

A permanent fault will certainly be interpreted by the recovery
procedure to be permanent. Therefore, for analysis purposes, a permanent
fault in the no faults state moves us to the one computer faulty state
without passing through the transient recovery state.

nalyzing our model are:
1. Characterize transient faults,

2. Model transient recovery, and

3. Find the failure probability.

The results obtained will be estimates of system reliability and the effec-
tiveness of recovery procedures.

5.2 TRANSIENT FAULTS

5.2.1 fransient Arvival

In this analysis we make the assumptibn that transient faults arrive
with an average rate t that is constant over the 1ife of the system. With the
constant rate over time, the probability of the arrival of a transient fault
in a small interval of time dt is wdt. It is well-known that under these
conditions (see PARZ 60, Ch. 6, Section 3, or DAVE-58 Section 7-2) the prob-

ability of exactly k transient fault arrivals between 0 and t obeys a Poisson
probability law. That is

k
Pr{ k arrivals in (0,t)} = o Tt (L$2
If we let k = 0, we have

Pr{ No transients in (0,t)} = ¢ ¢

which is analogous to the simplex reliability equation for permanent faults.

5-2

£-G

Transient

Recovery
N
X 7 o
?3\;\ CO/;;DU h
top T £
» Q
00,.). W‘t‘%‘
h
S oy
N\ b
653“ >
-
N .
S Permanent Transxent
No Faults Fault Mistaken for a
Permanent Fault
X,
O
&
A
0(0\‘-\
X, ¥
AT A0
< (Brot?
“QQQ
One N
Computer
Faulty

FIGURE 5.1-1

FAULT RECOVERY STATE DIAGRAM OF A TMR CONFIGURATION

System
Failuype

5.2.2 Transient Duration

There is l1ittle known about the nature of transient faults. A
reasonable assumption is that they have a definite duration. There is a
dilemma concerning the probability density function of the duration: We
could be of the opinion that short transients are much more l1ikely than long
transients which would lead us to an exponential density as a mathematically
tractable approximation. We could also be of the opinion that there is
definite mean duration with an associated spread which would lead us to the
gamma, normal or Weibull densitities as an approximation. We could also say
that transient faults are caused by several sources, each source with a differ-
ent average duration. But there are more sources with a small duration than
with a large duration. In this case, the composite density function of all
the durations could be a "Tumpy" exponential.

The above, along with its mathematical tractability lead us to
choose the exponential density function to represent transient duration.
Hereafter
vt

fo (t) = ye~
Dy

where fD is the probability density function of transient fault duration.
T

5.3 TRANSIENT RECOVERY MODEL

5.3.1 Components of Transient Recovery

A recovery procedure is composed of three stages as shown below.
First there is the detection time (T,) between fault occurrence and detection
which is random (It is random because we assume milliseconds between successive
comparisons). Then there is a delay Ty before starting the recovery procedure.
The delay is the diagnostic time which is a design constant for transient
recovery. Then there is the recovery time T, to accomplish the recovery
procedure. The quantity Tr is convenient variable which is defined as
Tr =Ty *+ Ty, the time between detection and recovery completion. The quantity
TA is the total time consumed between fault occurrence and recovery completion.
We assume the distribution of T, does not vary during the mission. This three

stage recovery sequence is also applicable to permanent fault recovery, but is
presented here in the transient fault context.

5-4

» b - -
= r -]
L I !]
1 1 1 1
' T T T
Fault Fault Start End
Occurrence Detection Recovery Recovery

For the time being we assume that Tr is a constant. We hope to
relax this restriction in the future to include more sophisticated recovery

procedures.

5.3.2 Fault Detection

We now focus our attention on Tu. Let us make the following
assumptions:
1. Faults are detectéd by comparison only.
2. The time between comparisons TC is a constant.
3. The probability of detecting a fault at the first comparison
time is independent of the point in time it arrives between
comparisons.

Under these assumptions, the probability density function of RJ is a
descending staircase function as shown in Figure 5.3-1. The width of each
step is TC, the time between comparisons. The origin is the time of fault
occurrence. The quantity ATC is the probability of detecting the fault on
the first comparison. The area under the entire staircase is one.

There are now three approximations to the staircase that come to
mind:

1. Exponential: fT (t) = st
u

. 1
2, Uniform: f, (t) = T ts[o,Tc]
u c
A tE[O,TC]
3. Uniform-Exponential: f. (t) = Cat
u ae * t>TC

5-5

where fy (t) is the probability density function of the detection time, ﬂ}
" .

The exponential is & gross approximation. The uniform assumes perfect fault
detection. The uniform-exponential assumes an exponential density for the
detection of lurking faults and is illustrated in Figure 5.3-2. A lurking
fault is an undetected error in program and constants caused by a transient
in the memory.

Since fT is a density function, we have
u

oo

./- fT (t)dt =1

o u

so for the uniform-exponential approximation we have

TC o0 ot

f Adt + ae drdt = 1
o TC

which implies
-oT

AT =1-e ©,
C

aTC = -Iog(?—ATc),

relationships that will yield one parameter knowing the other.

5.4 ﬁNALYSISlOF AN _ENHANCED TMR' CONFIGURATION

5.4.1 Definitions and Assumptions

We assume the system fails if a computer suffers either a transient
or permanent fault whenever another computer either {a) has suffered a previous
permanent fault or (b} is recovering from a previous transient fault. We
define the following configuration parameters:

1. A A* Permanent Fault Rate.

2. 1 A Transient Fault Rate.

3. ¢y A Pr {Recovery from Transient|Transient Occurs}.

4. &y A Pr {Transient Fault is interpreted as a Permanent}.

* A means equal by definition.
5-6

L-S

- = —AEMmO T =D 3RO T

£, {t
Tu()l

A |
-
|
|
B
A]
1
{ |
f 1
Y i | —
| T - ot
c
Fault
Occurrence
FIGURE 5.3-1 PROBABILITY DENSITY FUNCTION OF THE TIME TO FAULT DETECTION -

The quantity c; is the transient coverage in triplex, and is the
probability of returning to the no faults state from the transient recovery state.
We can see that %; is given by

&y = 1 - Cy - Pr {System Fails During Recovery from a Transient}.

The quantity Ly decreases the transient coverage. Therefore, we call QT
the transient leakage. We will find leakage directly, so we need to identify
some of the mechanisms that contribute to it:

1. Transient duration lasting into the recovery procedure,

2. A second transient occurring in the recovery computer during
the last recovery attempt before being declared a permanent,
and

3. An imperfect recovery process.
This leads us to our model of the TMR configuration as shown in the

fault/recovery state diagram of Figure 5,4-7,

It is important for us to distinguish between an uncovered transient
and a leaked transient. Uncovered transients include both leaked transients
and transients that end in system failure.

5.4.2 Failure Probability

We now find the probability of reaching the system failure state
within a mission, Let F denote this probability. Then

F=F,+F

P T
where Fp A Pr {System failure through the one computer faulty state}
and Fr 4 Pr {System failure through the transient recovery state}

The two system failure events are made mutually exclusive in the
following way: Let

o, A A +(1-CT)T

5-8

6-9

-a{T -t)
ae ¢

T
C

FIGURE 5.3-2 "UNIFORM-EXPONENTIAL APPROXIMATION TO THE FAULT
' ' DETECTION TIME DENSITY FUNCTION

Defined in this way, a, is the rate parameter for the occurrence of perma-

-a t
nents and uncovered transients. We use e U as the probability that no

permanents or uncovered transients have occurred up to time t. We then
express FP as:
T

~/r Pr {No permanent failures £(0,t), no uncovered transients
0

-n
Il

e(0,t), a permanent at t, and a transient or
permanent in another computer e{t,T)}

+

T
_/P Pr {No permanent failures £(0,t), no uncovered transients
0 e(0,t), a leaked transient at t, and a transient or
permanent in another computer e(t,T)}

-3¢ t ~2a (T-t) -2¢(T-t
q/” e YA dt [1-e M)e ()]

n

-30, t 21 (T-t) -2¢(T-t
3_[e) -2r()]

u LTT dt [1-e e

+

-3a T =20, T

% g - ﬁbu-Zc [1-e

1
t

t
>
o+
~

where Oy

At o

and a, T

Let ﬁ%(TA) & pr {System fails through the transient recovery state ITA}.

The quantity TA is a random variable since the detection time Tu is
random (TA = Tu + Tr)' Then since T, is random, F(TA) is also a random
variable. And F; = E(FT), where E denotes the expectation, so that

Fy = f Fr(T #t) £ (t) dt
T o VT T

since the Tr portion of TA is assumed to be a constant at this time. We
then express FT as

LL-S

X,
@S
No éﬁaﬁ
v‘
Faults >
3 Computers
Good
FIGURE 5.4-1

Transient
Recovery

Permanent
Fault L1

2 Computers
Good

One
Computer

Faulty

FAULT RECOVERY MODEL OF A TMR CONFIGURATION

System
Failure

T
f Pr{No perrnanent'faﬂures e{0,t), no uncovered transients
e{0,t), a non-leaky transient at t, transient or

>
H

permanent in another computer e(t,t+TA)}

;
-3ct '20T
3 &N gt fee B A
0 L

-ZUtT '3GUT

It

b g
1= [1-e
u

[1-e]

-2a, T
a[l-e °t 41

T -3ouT
where apA—=[1-e Jand 7, = (1-21.)1

The quantity T, is the rate of non-Teaky transients. We now find FT

using the above notational simplification as

T <20, (t4T)
T af (1-e "t) fi (t) dt
0 u

ol
n

I

T ~20, (t4T) £ (t) dt
a-af e t(") Ty
0

Now we apply the three detection density function approximations to FT‘
Using the exponential approximation, FT becomes

o0

-2a0, T _
a - a_[se b rom(2og¥8)ty,

Fro= .
_20.
= a(1- %E{r)
t
) 2cst+6(1-e—20tTr))
6+20t

With the uniform approximation, FT becomes

-
I

T 24T
C Gl -20,t
a[1—f e T dy

t'r -‘ZGtT
(1-e)]

i
jo1]
e |
=
1
5]

And using the uniform-exponential approximation, FT becomes

Te -20,T. -20,t
FT =a-a f Ae e dt
8]
- 20, T ~(20,+a)t
-f aae tr e t dt
TC
A -2o, T 20T -2UtTr -(2cft+u)TC
_ a[-]_ a (-I_e t C) _ ae e
2o 26t+ot

Note that if we set A = UTC and a= 0, FT becomes the same as for the case
of the uniform approximation. And if we set A = 0, TC =0, and o = §; Fr
becomes the same as for the case of the exponential approximation.

5.4.3 Transient Leakage

We will model transient leakage due to two causes:

1. A second transient occurring in the recovering computer

during recovery.
2. Transient duration continuing into the recovery process.
Here we consider ideal recovery procedures. A complete loading of state vector

and program/constants (if DRO memeory) would approach such an ideal for
this modeling.

Let L] be the event we receive no transient in the recovery process
and L2 be the event that the transient is still active during the recovery
process. Then the transient leakage becomes:

5-13

Pr {L]\/LZ}

} - Pr {Ll

1 - Pr {L]} + P [L2 f\LZ}

We compute the Teakage in this manner so that we can examine the two causes
of leakage separately.

Let

=
™~
I
o
=3
~
—
n
T
—
m
b3
(]
9]
wh
wr
-
<
[0
-t
-3
=1
=
wy
—e
m
=
o+
oo
o
-3
=1
[a
4
Q
=
—

then -
1 -.}; Pr {L1]TA = Tr+t} Pr {TA = Tr+t} dt

T - o (84T)
- T e (1) a
o u

=
j—"
l

For the uniform-exponential approximation to Tu

T w©
~a, T c =g, (T +t) (g +a)t
1-et"{f pe LT dt+f T dt
o] T

C

%

-g, T {0, +a)T

o, T tr t c
:1________('[_etC)_e e
Gt ato

t

—

Setting A = T and o = 0, we have L] for the uniform approximation
c

-UtTr -, T

(1-e ©©)

e
g, =1 -
1 UtTC

And setting A = 0, TC =0, and o = &; we have the exponential approxi-
mation case

5-14

-
g, =1 - & L
1 : 6+6t
-a, T
oyt6(1-e ©F)
Gt+6

Turning to Lo

% =f0 Pro(L,|T, = T #t} Pr (T,

To find Pr {L,|T,}
Pr {L,[T,} = Pr {D;> T, Tt

S

T+,

) = (T +T
ve "t dt = e YTy *Ty)

= Tr+t} dt

where y is the duration parameter as defined in Section 3.2.2.

So 22 becomes

e d

T i
= @ vf ethT (t) dt
0

2
2 u
T =] .
-¥T c . .
e Vi f pe "t ar + [aen(rE g
0 0
YTy a ¥T, . -lra)T,
=e {§-(1—e) + ;;E'E }.

for the uniform-exponential approximation.
12 becames '

For the uniform approximation,

And for the exponential approximation, 22 becomes

_ de

% 5y

Then we move to P {[%/\Lz}
Pr {L]/\Lz} f/: Pr {L1/\LZI_TA = T AT Y Pr{TA = T 4T} dt
~Tn [_ AT
= e QJf e Yt (1-e Ve At) fr (t) dt
o u

Computing the above for the uniform-exponential approximation and combining
with 21 and f9s W have for &1

~{g, *a)T _ _ -lo +y+a)T
- 1_e'°tTr{»_Q_ (1-e-UtT°)+°‘e % . YTW[___”_*_ (1-e (crtﬂ')TC)ere t ¢
T o ct+& t%+¢ ct+y+u
Setting A = %-— and « = 0 gives the uniform case
C
-a. T -¥T
~o, T, 1. t'c v ~{o,)T

OtTC (G‘t+Y)TC

And for the exponential case

=T

r e
[5+0 Ut+Y+5]

T v

-g
g =1 - e t

T

5.4.4 Transient Coverage

Turning to transient coverage, we can see that it is the probability
of the joint occurrence of two events. Let C] be the event we receive no
transient in any computer during recovery and C2 be the event that the tran-
sient is not active during the recovery process. Then the transient coverage
becomes

5-16

Cp = Pr{CT/\CZ}

=‘/; PP{C1»’\CZ|TA = t+Tr} Pr{TA = t+Tr} dt

f’” (]_e-Y(t+TV)) e—3.ct(t+Tr)
0

f- (t) dt
Tu

a

which for the uniform-exponential case becomes

-{30,+0)T
-3, T -3a,T t c =T -{30,4+y)T
cp=d °© r'{—“!"—-(1-& Le e e v [—li~—~ (1-e Y ©)
T 3% 3ct+u 3ut+y
‘(30t+Y+m)TC
+ V15
30t+y+a

Setting o =0 and A = 1/Tc gives us the uniform case

-30,T 1_6_3UtTc YTy
cr=e r —(1-e

| e '(30t+Y)TC)
BGtTc (36t+y)TC

And the exponential case becomes

-~T
e

1 v
r -
[6+3qf 3Gt+Y+5

-&IT
= §fe t

1
The equations obtained so far are summarized in Table 5.4-1I.

5.4.5 Simplifying Assumptions for Shorter Mission Times

The basic assumption used here is that AT<<l. This could apply to
either shorter mission times or certain transient burst environments. If
AT<<1, then AUT<<1 and ATA<<1. Another reasonable assumption to make i-

that v,8>>x. Using the exponential approximation to fT {t) our expression
for F is d
-2a, T
-3UuT -zctT -{30 =20,)T t, ~3a T 20, +5{(1-e t ™
¢ 1-e _3e [lce Ut 73 4 & (foe Uyt)
2 9, 3Uu-2ct 9, 20t+

we have

1+6TY‘

~ 2
F = BUEGtT + GTZUtT(——-S--—)

Similarly,

-YTy 3g

_ t
and 1-cT pl; + 5

(1+5Tr)

. 20
Note that & and T-c; differ by -E-t(HaTr). This means that

20
Pr{System Failure|Transient Occurs}==?;2(1+aTr)

5.4.6 Extension of TMR Modeling to N Computers

5.4.6.1 Fault/Recovery State Diagram

Here we will extend the basic enhanced TMR model to 4, 5, and
finally N computers. A natural extension to the fault occurrence/recovery
state diagram is shown in Figure 5.4-2.

We begin at T=0 with N working computers with the computers under-
going permanent and transient faults. On receiving a fault a transient
recovery procedure is initiated. In transient recovery, four conditions
can result in three outcomes:

5-18

6L-G

TABLE 5.4-1

SUMMARY OF EQUATIONS FOR THE TMR CONFIGURATION

UNIFORM-EXPONENTIAL* EXPONENTIAL * UNIFORM™
=277
2o, T 20, T, -(2g,+)T 3 t'r “3a T T gt
F T2 u fe © 20T, ge Uty L Ty “do¥, 2oys(i-e 7o (e N - et
T o {1-e 10 - Z; (i-e 1- Zo 7 o {1-e ”__iatT_—) v (1-e 0 2ot (1-e 1
- - -q, 7 4T
B N A L L T e logtrtalT, % L ot T el
e T e Tt e Y e SEm e g, e Toh T
a, T -g, T -{g, %a}T Ay e T -
i 1-Re t‘rﬂ-e-ctrc) ge CTa ETTC °t+._._._“-e ! 1- 8 e (N-e UtTc)
1 a - atg g+ o, T
t t t te
T T
-, =T =(y+al}T Ty T, T
2 e ¥ [% (1-e €} + T%e 9] .'EQGT 9;7- {(lee 5
¢
. «(3a,+a)T _ -(3o, Hyve)T ' -¥T . =34, T -vT
c e'a“t.Tr{ A (e 3°tTc] o8 t € e ", L A “_e—{?"'tﬁnc}* oe " CJ) Ge'athr[1 e ¥ 3 3°tTr[1-e t € e ﬂ_e'ﬂ“tﬁncn
T 35, AT Ta Hy T 3o, | da e 30,7, "~ (Fa 1T,
=30 T =24, T
FP o ¢ leg U 3e t i_e-(?-uu-th)TJ}
[l P 3o, Za,

*APPROXIMATIONS TO FAULT DETECTION

1. Permanent fault - Go to N-1 working computers.

2. A fault occurs in a computer assisting in transﬁent
recovery - Go to N-2 working computers.

3. A transient fault is leaked - Go to N-1 working computers.

4, The time TA passes (successful recovery) - Return to N
working computers.

The system continues to undergo faults and with the passing of
time degrades to three working computers. In three working computers, we are
in the familiar enhanced TMR.

5.4.6.2 Definitions and Review

We define the following failure probability as a function of the
number of computers working.

Fy(T) = Pr { System failure before time T|N computers are
working at time 0}

And the probability of one or more of n computers suffering a
fault in time TA is

-ng, T
i t A
fn(TA) =1 -e

We can express F2 as

where

5-20

L2-§

N
Working
Computers

Transient
Recovery

Transient

Recovery
N-1

Working
Computers

Working
Computers

Five
- Working
Computers

Working
Computers
Transient
Recovery

Transient
Recovery

S

FIGURE 5.4-2 EXTENSION OF ENHANCED TMR MODEL TO N COMPUTERS

Working

Computers

Transient
Recovery

And recall that

T 3t -26,(T-t)
FalT) =f 36 e 1-e)dt
0
T -3g t -2a,T
tfaue% [1-e F2%4
0
T 30 .t
=I.30£e u Fp(T-t)dt
0
T -30ut
+ 3T£e fZ(TA)dt
0
where o, A X+ ﬂTr,
g, &+ (1 -¢cqlr,

-nctT

FAT) a0 -e 4

T, 8 (]-RT)T
The quantity fn is the probability of receiving any fault during the time TA.

5.4.6.3 Finding Failure Probability for Four Computers

From the state diagram of Figure 5.4-2, we can find F4(T) as a
function of F2 and F3 by the sum of the probability of going to system
failure through the two working computers state and the probability of going
to system failure through the three working computers state. We formulate
F4 as follows:

522

T
F4(T) =‘/. Pr { No permanent or uncovered transients from 0 to t, a
0 permanent or leaked transient at t, system failure
from three working computers between t and T}

JfTPr { No permanents or uncovered transients from 0 to t, a

non-leaky transient at t, a fault in a computer assist
ing in recovery between t and t+TA, and system failure
from two working computers between t and T}

T -4¢ t
j‘ e U 4o dt Fo(T-t)

0

+

0

T -4cut
f e U ar,dtfy(T,) Fy(T-t)
0

-4 T -3c¢. T -3UuT ‘ZGtT
2] 143e Y 4 U + 12 e _e
1 UUZ 36u-20t 9% 4cu—20t

-4 T '
4 T =3¢ T
12e VY 92 . u u
AR *&u‘_ 5 To(T,) | 143e 7 -de
4o, T -20,T -4 T

4 t
o [e -e]
9, 4ou ZUt

1-e
Tmf3(TA)

For smaller ctT this simplifies to

F4(T) = 402 of T

5.4.6.4 Finding the Failure Probability for Five Computers

In the same manner as in finding F4(T) as a function of Fyand Fp,
we can find F5(T) as a function of F, and F;. So F5(T) becomes

5-23

T —SUut
F5(T) =f ba e F4(T—t)dt
0

T -5qjt
+ f4(TA)f Bt e Fo(T-t)dt

g =55 T ~4g T =3¢ T
= & r a2 s (tyiTig s U 2115 A U _1na U~
3 LUgTTEIZ\IA]J Li—o € o o v e d
3
60q -4 T -a
e M (-6 V)]
qu (40u“26t)
3 -3¢ T -2¢ T -20,T ~{50 -2a.)T
N 600, e Y(-e YY) e t (1-e u T
3cu-2ct 20“2 (5Uu—20t)(40u-20t)
o t.f,(T) “5e T “dg T
+ 2 32 A [1+4e U _ge U]
%u
-20,.7 -(bg =20,)T ~4s T -5 T
) 200 T, fo(T) | Tt (1-e ¥ ') e U(je U)
4ou~26t 50u-20t S,
(T) -5¢ T ~30, T
A +3 570 3 u
+ __”___““ [UR L 2()] [] 2 ? e]
a
U
-20,T -{bg =20,)T 30 T -26 T
CBoyr M) fe Tt ee ¥ Y e U (1ie M)
3Uu th 50u-20t Zcu

which for small ctT simplifies to

3 4
FSCT) ~ 502 ctT

5-24

5.4.6.5 Generalization to N Computers

An examination of the integral expressions for F4 and F5 shows a
recursive relationship between FN(T) and Fy_, and Fy , which may be given as

follows:

T -Ncut
FN(T) =’/' NUR e. FN_1(T-t)dt
0

T -No, t
+f (1) f N, e Frop(T-t)dt
0

Thié'relationship may be:expanded into an (N-1)-fold convolution
integral. An example of this is shown in Figure 5.4-3 for F5(T).'

5.4.7 Recovery Start Delay

When formulating a transient recovery procedure we are faced with
a dilemma. If we begin the recovery procedure too soon, a Jong transient
duration could hinder recovery; and if we delay the start of the recovery
procedure too long, we leave the system unnecessarily vulnerable to other
faults.

We seek an optimum delay associated with this tradeoff by maxi-
mizing transient coverage. Using the exponential approximation to transient
detection we have for Cr

T

—3GtTY‘ 1 e v]

e - [a+3ct T o v

It

Cr
-30,T -30,T, ~(Bopt)T,
NE - £]
5¥30 To, 70

5-25

by breaking Tr into Tv+Tw

ja N

o

. T

Differentiating and setting = = 0
v

j= R

-3¢, T ‘(3Ut+Y)T .
dey -30,T, 30, PV (3g,4v)e V] L
HT;'= -te [h_3+30t B 3o, +y+s -
This yieids
T -] (3Ut+Y)(3Ut+6)

D TY'—]Og [Fﬁg(act,{_,y_'.ﬁ)]

which will be a maximum if the second derivative is negative at that point.

The second derivative is

-vT
2 2 Yy
dTe 5+36t 30t+y+6
and it becomes
pd
dc -30.7T
T_ tr
- 'Ge () < 0
dT 30, %8

when TV is as given above.
Therefore, we have found a maximum. Similarly, the uniform approx-
imation yields the following optimum delay

-(30t+y)TC

-]
3ctTc

_ 1 1-e
TV-?}OQ[

1-e

 5-26

L2~

T-t

o, - T-¢
dt5a£e f d§4a£e

T

-30,¢ T-¢ -20
FS(T) = d§'3a£e u dqaote t"
0

o\
.
=]

=
vy

o\

o

5ot 40 8 178 30 ¢ 20,T
dt5a£e u f d§4a£e “u f 37, e u [1 e ! A]
o ' 0

o~

T T-t T-¢
-50 1t -45 & =30, T -20.4
+/ dt50£e u f dé4 / e ‘u [1 - t A]f diaate t
0 o ‘ o .
T . : T-t -&
Sa t -40,T -3¢0, ¢ o -2
+ f di5 7 e “u [1 -e t-A] f dé30 e “u f di20.e %t
0 . ' 0 o

T - s T-t .
- -50, t 40, T -30 & -20,T
o f sy [T [ey S
o] ' '

FIGURE 5.4-3 FAILURE PROBABILITY FOR FIVE COMPUTERS

5.5 MODELING OF GENERAL CONFIGURATIONS

Here we present a general model for the analysis of adaptive and
non-adaptive configurations consisting of 1 to 5 whole computers. This
model includes transient leakage as well as the components of coverage
discussed in Section 4.

5.5.1 The Recovery Process

5.5.1.1 Coverage
Coverage is defined as (BOUR 71):

¢ a* Pr{ System recovers|fault occurs}
Here we break coverage into a tr1ﬁ1et as follows: Define

u p Pr{Fault is detected|fault occurs}

L

v & Pr{ Fault is located|fault detected}

1=

w 4 Pr { Recovery|fault is Tocated}

1=

as in Section 4.2.5. Here u, v, and w are the detectability, diagnostability,
and recoverability, respectively and

£ = uvw
The quantities u, v, and w are probabilities that also have times
associated with them. We define

Detection time

—
I

—
>

Diagnosis time

—
[

Recovery time

The times may be modeled as random variables or as "worst case"
values.

*A means "equal by definition”

5-28

5.56.1.2 Transient Leakage

Transient fault recovery is divided into three states as shown

below:

Detection,Delay,Recovery,
| T | T 1T !

U v W
In this case detection is the fault indication generated by output compérators
or by error detection RET's. Diagnostic time is a design delay to allow the
transient to disappear. Recovery consists of one or more of rollback, rollahead,
and memory'copy depending on the number of operating computers and recovery

design.

5.5.1.3 Permanent Recovery

Permanent fault recovery begins after an unsuccessful transient
recovery. An uncovered transient, as well as a true permanent, may be declared
as a permanent fault. After a fault is declared (or detected) as a permanent,

diagnosis and recovery may proceed,

The overall picture of fault detection, diagnosis, and recovery in
the presence of transients and permanents is shown below:

Recovery
w
Transient - = -
| Betection | Delay | Recovery | Diagnosis | Recovery|
T T T T T
Uy Vi Wi vp wp
Fault Fault Recovery Transient Start Recovery
Occurs Detected Start Recovery Switch Cycle
Complete. to N-1 Complete
Permanent Computers
Detected
\fvw

Second Level
Diagnosis and
Recovery

5-29

The subscripts t and p represent transient and permanent, respectively.

The times and probabilities are erendent on the particular config-
uration, the recovery procedure, and the number of computers that are working.

5.5.1.4 HNotation System

Coverage and its component parts are in general different for the
number of working computers in the configuration. We need to identify the
number of computers and whether we are talking about transients or permanents.

The notation is defined by the following table:
Type of
No. of N Recovery
Computers Permanent Transient
1 Cqs Uqy Voy Wq, T , T , T 2y U sV W, T T ,T
LR R R AT vyt oy 1T Ys2 Yg2 Vg UG’ v
2 C2, etc. 22 ud’
3 CS’ etC. 23 uts
4 C4, etc. 24 uf’
5 C5, etc. 15 UQ’_

5.5.2 Analysis of a Duplex Configuration

5.5.2.1 Definitions and Assumptions

We define the following parameters for a duplex configuration:

1. &, 4 Pr{Transient mistaken to be permanent while in Duplex|
Transient occurs}

2. VoW, 4 Pr{Successful adaptation to Simplex|Permanent or
Leaky Transient occurs} '

3. 2 - Pr{Transient mistaken to be permanent while in simplex|
Transient occurs}

. +
4 a Q A 221:

5-30

The quantity 22 is the transient Teakage in duplex. Transient
recovery while in duplex is achieved by a rollback. Dup1ex transient leakage
is composed then if:

T. Pr{Failure of roilback}
2. Pr{Transient duration lasts into rollback}
3. Pr{0ther fault occurs during rollback}

The quantity VoW, is the product of the diagnostability v, and
the recoverability Wy Diagnostability is the probability of correctly
locating a fault given the fault is detected as a permanent or uncovered
transient. Recoverability is the probability of a successful adaptation to
a simplex configuration given a correct location of the fault. The quantity
9 is the average rate of occurrence of permanent and leaky transients.
Diagnosis is achieved by software self test in conjunction with BITE.

5.5.2.2 Fault/Recovery State Diagram

The fault occurrence/recovery state diagram of our dupliex config-
uration is shown in Figure 5.5-1. From the no faults state a transient will
send us the rollback state where a rollback is attempted. It is successful
with probability 1-22. If the rollback is not successful, then the fault is
taken to be a permanent from where diagnosis and recovery is initiated. If
the fault is permanent, then it is taken to be permanent with probability 1.

In diagnosis and recovery, a recovery to simplex is achieved with probability
VoM.

In simplex, it is possible to have some transient fault recovery.
Detection is accomplished by error checking RET's (e.g., BITE). After
detection, diagnosis is immediate. Recovery consists of rollback attempts.

The simplex transient lTeakage is then

2y = 1 - U W,

where v = 1

5-31

5.5.2.3 Failure Probability

We define FN(T) as the probability of system failure before time
t=T, given N working computers at time t=0. The probability of failure in
simplex then becomes:

where gy 42 F 4T

If we set 2y = 1, then F](T) becomes the ordinary simplex failure
probability.

And the probability of failure in duplex becomes:
FZ(T) ='[e 20,dt (1—v2w2)
0

T -2¢ t
T)(‘ e 2 202 VoW, Fl(T—t)dt
0

-202T
= (v} (e)

T -202t
+ v2w2f 209 € | F](T-t)dt

0

where 9y = X+ 221 as before, and

5-32

£€-5G

ROLLBACK

FIGURE 5.5"1

FAULT OCCURRENCE/RECOVERY STATUS STATE
DIAGRAM FOR A DUPLEX CONFIGURATION

T 2,1 - ,(1-1)
e % 2,dt[1-v,+w(l-e)]

F(T) =
2 0
_gtT
-202T 202 e -{20 - D])T
=1-e " 2oy (1 -e) vy
If we Tet » = 0 and hy = 1, then F(T) becomes
: -2h,tT 222e"TT —(222—1) T
Fp(T) =1 - e s T, (1 -e) vou,

This is an approximation for the case where transient faults occur much
more often than permanents. And if we let v = 0, we have for F(T)

F2(T) =1 - 2w2w2e')‘T + (2v2w2 - 1)(3'2}\T

which is the case when transients are not considered.

5.5.3 Extension to N Computers

5.5.3.1 State Diagram

The extension of Figure 5.5-1 is straightforward and is shown in
Figure 3.5-2 for up to 5 computers. The state diagram presented in Figure 5.5-2
contains several states labeled "transient recovery." When there are three
or more non-faulty computers prior to the occurrence of a fault, then the
transient recovery process involves rollahead and memory copy (if utilized).
The probability of success of the recovery procedure is reflected in the
transient leakage parameter. The probability of a transient resulting in
system failure is reflected by both the leakage (zi? and recoverability (wi)
parameters, each of which is determined through simulation runs using the
simulator described in Section 6. Similar remarks apply to the duplex and
simplex cases, but include the diagnostability (v2).

5-34

GE-5

PERMANENT PERMANENT
TRANSIENT PERMANENT TRANSIENT PERMANENT DETEgTION
RECOVERY RECOVERY RECOVERY RECOVERY ROLLBACK
]
&
&,
w &
3 &
FAULT L FAULT FAULT 1-£, <
| N\
7
]]
— L
QUADRUPLE TRIPLEX DUPLEX SIMPLEX FAILURE
~—]
A i i |
FAULT -4, wy FAULT 1-£, VoW o
~
L —
PERMANENT PERMANENT
TRANSIENT PERMANENT DIAGNOSIS &
ROLLBACK
RECOVERY RECOVERY RECOVERY
L
1-wy

FIGURE 5.5-2 FAULT OCCURRENCE/RECOVERY STATUS STATE DIAGRAM FOR
’ 1-5 COMPUTER CONFIGURATIONS

With 3 or more computers, we assume diagnosis is certain (vn=])
since two or more faultless computers can point the finger at the faulty
one; and u is considered to be one as in duplex since output comparison is
used for fault detection. Permanent coverage then becomes

C_ =W n=3,4,5

5.5.3.2 Failure Probability Determination

-3c.T

Fa(T) = (1-wy) (1.3 %)
T —303t
Wy f 304 e FZ(T—t dt
0
-404T
Fa(T) = (T-wy) (1-e)
T -4U4t
+ W, f 404 e F3(T-t)dt
0
—505T
F5(T) = (T—w5) (1-e)

0

where 09 = A + 257 as before
and 9 A At 241
T A A+ EST

If we assume f3 = %y = %55 then a general recursive expression for the
failure probability can be given as

5-36

'UNT

Fy(T) = (1wy) (1-e V)

Fyp(T-t)dt

where we replace Noy by oy for rotational simplification.

5.5.3.3 General Solution

A general solution to FN(T) may be found by finding SN(T) = 1~FN(T).
Here we use CN for W N23; 02 for VoW, and C1=0 as well as using oN for
Noy. If we substitute I-SN(T)'in for FN(T) and simplify we get:

'UNT . T oyt
1-5(T) = (T -cyd1-e 7)+ CN.}(.UNG (1 - 5y_1(T-t))dt

]

‘GNT
(1-e) - cN(1 -e

By rearranging terms we have:

~oy

0

0

I
) + cN(l - e

0
-0yl
N) - ¢

“UNT T fONt
ST =e 7 +¢y °Nf e U Sy 1(T-t)dt

0

a,,e
rL/ﬂ N

0

-o'N

T

'UNTl —UNT T —cNT '
a - cN)(1 -e) + Cy ope - CN,/” e SN_1(T—t)dt

Syop(T-t)dt

Thus we have a recursive expression for the survivability of our N computer
configuration. Since this is a convolution integral, we can re-write this

as:

5-37

I
D
]
Q
_l
+
(@]
=
O
=
(:“-3
—
©
C'L
d'
o
I=4
ot
S

Since S](T) =1 - F1(t) =g

We can find SZ(T) by substitution. Thus

-02T T gy]
e (1 +C2°2f e ' dt)
0

-g,T T {on-0)t

e 2 (]+C202f e 21 dt)
0

€209

927N

S

(1)

—02T

. a (62'01)T

(e -1))dt

i 200 e-c1T L - 9202) e-czT
02-61 0'2-0'1

Note that both ST(T) and SQ(T) can be expressed as a 1inear combina-
tion of exponential functions. It seems reasonable that SN(T) could also be

expressed as a linear combination of exponential functions. In particular,
assume

-g,T -g,T -agl N
1 +uN2e 2 + - -+uNNe N =.Z10L
J:

—UjT
SN(T) =

By substituting this expression for SN(T) into the recursive equation
and simplifying, we obtain

5-38

) _UN+1T ' T UN+1t
Sy (T) = e (V+cyyy o] Sy(t)dt)
0
-Opat 1 T o,..t N -g.t
- N+1 _ N+1 j
= e (1 + Cp+] °N+1f e (}; ap; © ydt)
J=1
0
-0, 4T N T (9,,,-0.)t
= N+1 : N+ §
= e (1 e UNH}% aNjf e dt)
0
“oNa T \ MNj (°N+1‘Uj)T
= e (1 +Cy.q ayuy 2. —— (e - 1))
L. S, -g.T N c Gy o100y Ty T
a kiUl R RO LANGIR A
-3=1 N+ ™3 5=1 N+1773
N+1 -ojT
R 0% B
J=1
where
W CNRIONION 1N
N+] !\] UN+1"Uj .
N
N N4 T 'jz;; AN 5

Thus by mathematical induction we have shown that the surviv-
ability of an N computer system can be expressed as a linear combination of
exponential functions, and in the process have found an iterative expression

for finding these coefficients.

A FORTRAN program has been written to

evaluate these coefficients on a computer and to plot the results on an

automatic plotter. .

5-39

5.5.4 Simplifying Assumptions

The formulas obtained for the failure probabilities of the various
configurations can be simplified by representing the exponentials in each of
them by a power series, and discarding higher order terms (i.e., let

2 3 2 .3

e"x =1 - x + %?-- %—-+ ** ' and assume that %T“ %;3 etc. are small in

comparison with x}. This is a valid procedure as long as it is assumed that
ctT< < 1. (Note: This implies that cNT< < 1)

In the following discussion, define

F3_E(T) = Pr{Enhanced TMR fails before time T}

F3_A(T) = Pr{Adaptive TMR fails before time T}

M
]

Relative error in simplified formulas

. actual error
ReTative error =
(correct value)

l
T
o]

—
-+

_‘Q

]
1l
&

but e 1 5 5 con ® 120, T

hence F](T)::GTT

The relative error is given hy

| | I -G]ZTZ/Z + 0]3T3/6 - . UTT/Z G]T
£~ < <
_ 22/ 1-a.T/2 2
G]T o T2 + U]3T3/6 e 1
o.[T
thus F](T) = U]T with |E| < 5

5-40

5.5.4.2 Duplex

-202T Zczvzw2 (e—c1 e

T -202T
PN =12 gt)

~ 202 1-v2w2T + VZWZUZUTTZ where |e| < czT

Note that the second term can be ignbred if p is not close to 1, i.e.,

_ G1V2W2T
Fo(T) = ?02 (1-vw,)T with [e] < 5 T-v

5.5.4.3 Enhanced TMR

=30 T -20, T

_ 1-e U 30 t —(30u-20t)T
F3—E(T) = o, o, - 30u-?ct :1 R B
. =2q,T
-3¢ T 20 : t'R
Ty L u t+6 (1-e)

If we assume that Oy ™ Oy = 04 and that failures caused by transient overlaps
are negligible, then we have

2 .
Foup(T) = 3030, T" with le} < ‘g-(ctT)

5-41

5.5.4.4 Adaptive TMR

-30,T) 60302(1-v2w2) - 3030] —ZUZT) -30,T

-1 . 3 2
F3-A(T) =1-e (202-01)(303-202) (e €)
) 60302V2w2 (e-o1T ,9‘303T)
(202-01)(303-0])

2 3.
~ 300, (1-voH,)T" + p030,07 T with |e| < ogT

2. sl
Note that F; »(T) = 3040, (1-v,W,)T% with [e| < 31

5.6 MARKOV CHAIN ANALYSIS METHOD

The basic approach is to model the computer configuration as a
continuous parameter Markov chain, by assuming state transitions occur
continuously. Once this is done we can develop a vector differential
equation* representing the system and then obtain an expression for the
state probabilities at any time t. This technique was used with the aid of
computer programs to determine the state probabilities for the duplex and
adaptive TMR configurations. The results agree with those of previous
models.

5.6.1 Mathematical Model

Given a fault tolerant computer configuration, we model it by
drawing a state diagram representing the status of the system.

In Figure 5.6-1 the nodes (S], Sps S4, 54) represent the states
and the branches represent the state transition paths. A transition occurs
at each small time increment h.

* This is a compact form for a system of differential equations.

5-42

FIGURE 5.6-1 MARKOV CHAIN EXAMPLE

5-43

To each state S., assign a state probability function Pi(t) defined
as follows. '

P.(t) & Pr{ The system will be in state S, at time t}
i

Also assign to each branch a conditional probability that is a function
of t and h, defined by

1lJ(t sh) = Pr{ System in state S, at time t+h|it was in state sj
at time t}

We make the assumption that p, il .{t,h) is independent of how we arrived in
state 53’ and thus model the system as a discrete parameter Markov chain.

5.6.1.1 Development of the Differential Equation

We want to determine P, (t), the probability that the system will be
in state S. at time t. Because of the Markov assumption,

Z Py 3(Esn)P;(t) (1)

Given that a state Si is occupied at time t, state Sj must be occupied at time

t+h. Hence,

Z: Py[4(tsh) =1 For i =1, 2,3, ... N

By solving for pi|i(t’h)’ it follows that

Stsh) =1 - 2: b1 (toh)
J+1

By substituting this equation into Equation 1 we obtain

pi] ili

Pi{th) =3 pyps(tnP5(t) + 1 = 20 pyy;(Ean)IP(E)

- - -J-
iFi ifi

5-44

An equivalent expression obtained by subtracting Pi(t) from both sides is
P.{t+h) - P.(t) = JZ Pi15(tshIPy () = Pylt) 20 py4(tsh)
jti jii
By defining
pi[j(t’h) for itj
<1>1.J.(t,h) =
- %: pj]i(t’h) for i=j
Jti
We can write the ébove equation as |

P,(t+h) - P(t) = qu,ij(t,h)'pj(t,)

or in vector notation, we have
P(t+h) - P(t) = 2 (t,h)P(t) (2)
o -1
where P](t)

P(t)
(e &

e

Py(t)

L. -

5-45

and

— —

o {tsh) e (t,h) © ° ° g, (t,h)

a(t,h) = @21(t,h) ¢22(t,h) ° ° o ¢?N(t,h)

[a]
=}
[+]

‘I)m (t,h) ‘I’Nz(tsh) ©oe e @NN{tsh)

‘ Equation 2 represents an iterative relationship, that may be used
to obtain the various state probabilities for any time t. However, we can
obtain a result that is easier to evaluate if we make some further simplifi-
cations. Assume that state transitions occur continuously, so the system can
be modeled as a continuous parameter Markov chain. The above result is then
extended for a continuous model as follows.

By dividing both sides of Equation 2 by h and taking the Timit as
h approaches zera, we obtain

. s]
1in FR(tsn) - B(D) < Tin i 3 (1) (3)

Now, Tet

B(t) 4 Tim-%_g(t,h)
h+0

Then since

qu_P_(t) A ;m % (P(t+h) - P(t))
-0

We can rewrite Equation 3 as
$p(t) = g(t)p(t)
dt ~ 2V

5-46

(4)

which actually represents the system of N linear homogeneous d1fferent1a1

equations

i=1,2, ..., N

dP, (t) '
"E:B1JPJ(t) for i =

Solution Procedure
To solve Equation 4, we define an operator eB' as follows

5.6.1.2
(5)

Then d.
dat - " dt

It then becomes apparent that the solution to Equation 4 is
(6)

P(t) = (e£%)P(o)

Since

is defined by the recursive relationship

is the identity matrix, and g

I
Bm=§_-_8_m—] and§1=§.

5-47

and

efit can either be evaluated by means of the above series, or in closed form
by a spectral expansion.

5.6.1.3 Closed Form Solution

The approach here is to expand g on a set of matricies{_gi, 92’ cees QN}
called projectors. Projectors have the following properties (see DENN 67 Ch 2}.

2
1.0 =00 =
2. %+ Q=0 for 1%j
3. 0+ %, v ... QN =1
b B =a 0 toa,ly + .l oy Qy where{a.} is the set of
eigenvalues of B.

Using these properties, it is easy to show that

mn m m m

=gy Faply e ol

and thus

e £ =1+pgt+ %@g A

= (gq + ...t QN) +-(u]£h e * “NQN 3194

uNQ_N)t +
= (1 +a1t+—]2—u]2t2+ D N (1 +oyt + oNt2 + o)
u.]t otNt

1}
()
-"r
-+
+
9]
¥

A matrix can be expanded on projectors having the above properties, if and
only if it has a set of N linearly independent eigenvectors. This will always
be the case if the matrix has N distinct eigenvalues.

5-48

5-49

If it s assumed that the configuration can only get worse (it can
only go from N computers to N-1 computers, and not vice versa), then the state
‘diagram will have no loops in it. In this case, the transition matrix g can
always be written in lower triangular form {all elements.above the diagonal are
0) for a proper ordering of states. Since the eigenvalues of a triangular matrix
are just its diagonal elements, the projectors{ gq, ge, cees QN} can be easily
calculated as follows:

1. Qs = Bi_i

wi(g) N
= T where ﬂ(x) b7 (xjak)

i k=1
k$i -

[
o
1

P(t) then turns out to be

n qit
P(t) = _i; e 9.12(0)

5.6.1.4 Power Series Evaluation of P(t)

P(t) can also be evaluated directly using the power series expansion
for P(t). This approach is useful for determining algebraic approximations for
the state probabilities. It is also a much more general procedure, and can
be used for a system whose transition matrix is not easily expanded as a linear
combination of projector matricies.

From Equations 5 and 6 we have

ﬂﬂ=(1+5+%§%2+%£9+.“)
= P(o) + (g PNt + (¥ 8°P(o))t” + (¢ £°P(o))E3
= A FAL+ AL AL +
By At + At At +

5-49

where the A., are column vectors defined by the iterative relationship

= P(o)

AL s

_
=7EA

5.6.2 Application to the Duplex Configuration

To determine the state probabilities for the duplex confiquration,
we make several assumptions.

1. Permanent and transient failures occur independently with
mean rates A and r respectively.

2. The failure occurrences have an exponential density function.

3. The system is continuous - i.e., the time spent in the transient
recovery states is negligible, and a multiple fault cannot occur.

5.6.2.1 Determination of the Transition Matrix

In Figure 5.6-2, the important states are duplex, simplex and
system failure. The time spent in the other 2 states (rollback and diagnosis)
is negligible {zero if it is assumed that the system is continuous), hence
we combine them with the duplex state to obtain the following state diagram.
In this example, we assume W, = 1 and &y = 1.

5-50

System
Failure

A = Permanent fault rate
T = Transient fault rate
o4 = 1 +) = Total fault rate

p=VoWy = Pr {System switches successfully from duplex to simplex}

C, = Pr {Transient errof corrected by rollback} (= 1-22)
cth = Pr {Fault occurs in time increment h}
T/Gt = Pr {Fault is transient}
= - = - L
oy =+ (1 C2)T 9y (1 CZ(Ut))

FIGURE 5.6-2 STATE DIAGRAM FOR THE DUPLEX CONFIGURATION

5-51

Where the transition duplex - simplex actually corresponds to the sequence
of transitions.

Duplex - Rollback + Diagnosis + Simplex
and the transition
Duplex - System Failure
corresponds to the sequence of transitions
Duplex - Rollback - Diagnosis + System Failure

The new conditional transition probabilities are the product of the conditional
probabilities along the path, hence since

Pr { Duplex+ Rollback} = 2Gth

Pr { Rol1back ~ Diagnosis} = 1 - C (%—J
and Pr { Diagnosis - System Failure} =1-p
We have

Pr{ Duplex + System Failure} = (20,h)(1 - Cz(é?o)(l-vz)
2
= 2(]-V2)62h

Similarly we obtain Pr{ Duplex > Simplex} = 2v202h

let 51 = Duplex
S2 = Simplex
S3 = System Failure

Then from the above figure we obtain

Pagp(tsh) = 2v o0 > 471 (tsh) = 2v,0,h
p3jp(tsh) = 2(0-vpdogh 3y 45y (t,h) = 2(1-vp)o,h
Py|p{tsh) = ouh D ég,(tih) = oih

Also b1 (sh) = =(py 4 (tsh) + pyyq(£sh)) = -202h
¢5p(tsh) = - o.h

and ¢33(t,h) =0

5-52

Thus the transition matrix is ¢ (t,h) = 2v,0,h ~o;h

-202 0 0

- lim L = -
ﬁ-}:’; 2 (t,h) 2v,0, o, O

—2(]—v2)02 oy 0

5.6.2.2 Closed Form Solution for Duplex Configuration

P (t)
P(t) = (e-gt)f_-(o) where P(t) = - Pz(t) '
Pa(t).

and Pl(t) = Pir{ System is in duplex state at time t}
Pz(t) = Pr { System is in simplex state at time t}
P3(t) = Pr{ System has failed by time t}

Earlier it was stated that

Wt
P(t) = 1,21 e ' Q;P{o)

and ﬁ(x) =

5-53

-2, 0 0
For the special case where B = |2v,0, -0y 0
f“-vz)cz gy 0‘&
The eigenvalues are
aq = =20,
0.2 = "O't
ag = 0
and the ¥.., are
i (x) = x(x+ct)
¢é(x) = x(x+202)
#,(x) = (x+o,) (x+20,)
S0 ‘P'l (a]) = “’](-202) = 202(202-0t)

¢b(a2) qé(-ct) = '°t(2°2'°t)

%lag) = %0) = 2040,

Also
= 1 - - [
-202 0 0 ot-ZU) 0 0 -20’2 (ct—ZU) 0
*"-l (g) = 2\}202 e 0] x 2v202 0 0 = —4V202 0
2(1-v,)o, o 0 201-v,)0, o, o 20,0,-4(1-v,)0,% 0
2(0=vplop oy O] |2(=vplop oy oy | |20p9pm4(1-vp)o,
0 0 0
{Pz(ﬁ_) = '2V202 'ct(zoz'ot) 0
2V,0904 "1;(202'01;) OJ

5-54

(o N o B - |

Zozct Zczct 2020t

Thus the projectors are

1 0 0
o - ‘P](E_) i} -ZV'ZUZ 0 0
17 %) 205704
2v.,0
(- 22 0 0
Uz‘Ut N
0 0 0
2V no
_ 2°2 .
9'2 - 262-Ut } 0
-2V202 q 0
and
0 0 0
%= |0 0o o0
1 1 1

A closed form solution is thus

~2oyt —ctt
P(t) = e Q P(o) +e * Q, P(o) + Q5 P(o)

5-55

1

where P{o} = |0} since the probability of being in the duplex state at
0
t=0 is one.
Hence,
1
0 0
o -252t -2v202 -gtt 2v202
L\L] =g 2 _ T e 2 _ T 0
02 Ut 02 Gt
- 2v2c:2) -2v202 :
2op=0y, Zoz-ot J o
Thus P1(t) = Pr { System is in duplex state at time t}
-20,t
- 02
Pz(t) = Pr{ System is in simplex state at time t}
_ 2V202 —att —2021'.
" 2090 (e -]
2t
P3(t) = Pr { System has failed by time t}
)] A (]- 2V202) e‘zczt) 2V20'2 e"Gtt
202‘Ut 202-ct

Note that P3(t) agrees with the other results.

5.6.2.3 Approximation for Small Mission Times

A quick approximation for small mission times, suitable for hand
computation, can be obtained by evaluating the first few terms of the power
series expansion.

5-56

The transition matrix is

Earlier it was

where A.

1

2V20'2 "U.t 0
Z(T—vz)o2 o4 0

shown that P{o) = Ay + At + A

1
i

i §.£¢_]‘

and ﬁo = P(o)

Using this for the duplex case we have

A,

rl)):

Thus P(t) =

P(o)

| 3=

r| —
i

1

o

-2v202(02+dt)

2
-2(1-V2)62

+V2020t J

-

"202

2V202

2(1-v,)o
L 272

5-57

2
2t + ...

2o 2

2

-2(1~v2)022+v

-2V202(02+Ut)

292%

P](t) = Pr{ System in duplex state} = l-ZGdt + 20d2t2

3 L N i 2
Pz(t) = Pr{ System in simplex state} = 2v,o,t 2v202(02+at)t

} : . 201) 2
P3(t) = Pr { System has failed} ~2(1 vz)czt(l czt)+ (vzgzat)t

The approximation for P, (t) agrees with the result obtained in Section 5.5.4.2.

5.6.3 Application to Adaptive TMR Configuration

The same assumptions are made in this analysis as were made earlier
for the analysis of the duplex configuration.

5.6.3.1 Determination of the Transition Matrix

The state diagram for the adaptive TMR configuration is

30, h

- Duplex
Transient
TMR j Recovery Configuration

Co(-5)
Tct

where C= Pri Transient error corrected by rollahead} (=]—£3)

The time spent in the transient recovery state is negligible, so we
combine it with the TMR state to obtain

System

Fajlure

The transition matrix is thus

Note that the outlined portion surrounds the transition matrix for the duplex

configuration.

5.6.3.2

-30
3¢

3 000
f-ZcE 0
|
| _
;ZVZUE Of
:2(1-V2)02 o4

Approximations for Small Mission Times

An approximation for the state probabilities can be obtained by
evaluating the first 4 terms of the power series expansion.

ri:b

r| —

r

-

]

o o O

2
3
-(9¢ 2 + 60,0,)
3 32
6V20302

6(1'V2)0302

5-59

Thus

Thus since P(t)
we pave

A

B .

3
-2703

3 2
2703 + 202(903 +603u2)

| —

2
‘2V202(963 +60302) -6V203020t

-2(1-v2)02(9032+60302)+6v203020t

——

2 3
By + £

B Ayt A+t 3

Pr { System has failed by time t}

1
*‘§{5(1-V2)0302)t2 + %-(2—(1—V2)02(9032+50302) + 5V263026t)t3
2(1-V2)0302t2 [3-(303+202)t] + V203020tt3

o~ 2 3 .
-3(1-v2)c302t + V04050, 1 assuming (3s3+252)t<<3

5.6.4 Programs

Several programs have been written in APL to aid in calculating state

probabilities for various mission times. These programs have been tested for both
the duplex and adaptive TMR, and the results agree with those obtained earlier

for the Interim Report.

5.6.4.1 Projector Method

f1]
(21
(3]
[4)
[51
(o]
7]
[8]
[al
{101
[11]
{121

VPROJECTORL[1]V
PROJECTOR A I NP 3K4d
I+(pA)pl ,{(N+1tpA)pQ
EVS«+« 1 1 {4

TRANS+(0 ,pA)p0
P+((AI‘DA)DA)‘EW“;°th
J+1

LP1:K+2
Re(~ILJ; 1)/ ¥
Q+PLR[11;;]

LP2:@+Q+ xPLRLK]:;)
+(N>K+X+1) /LP2
THANS+«TRANS (1) Qix/(~I[J;])/EVS{JI-EVS
*(Nz2d+J+1)/LP1

v

5-60

This program determines the eigenvalues and projectors of a tri-
angular matrix - A. The resulting eigenvalues are returned in the vector - EVS,
and the projectors are returned in a multidimensional array - TRANS.

VEVAL1[UIV
V R«IC EVALL T

[1] Re(wlo xEVE)+ . xTRANS+ ., xIC
v

This program uses the results returned by PROJECTOR to determine the
state probabilities for various mission times. The initial condition - IC,
and a vector of mission times - T are the arguments of EVAL1. An array of
state probabilities is returned as a result. '

5.6.4.2 Power Series Methed

VTRANLUIV

V R<IC TRAN A;M
(1] M4+ xIC
[21 ReM, [0.5] IC
{3l I+«2
[(u] LP:MeA+.xM+T
(5] ReM,[1]1 R
{61 +{HTzI{+«I¥1)/LP

v

This program returns the set of column vectors A , A], Aoy -
(see Section 5.6.1.4) in the form of a matrix. The number of terms (column
vectors) is determined by a global variable - NT. The initial conditions - IC,
and the transition matrix - A are the left and right arguments of TRAN

respectively.

vEVALLOIV
V Rvd EVAL T
[1] R+({(pd),1)pT)14
v

Given a matrix of column vectors [A], 52, Ces &N] and a vector
of times - T, this program returns the sum ﬁo AL gztz + ﬁNtN for each t.

It is used in conjunction with TRAN to obtain P(t).

-

VERRLUIV
V Rel ERR A

[1] Red EVAL 7

(2] R«(R-(((ppA)t1)vA) EVAL T)+R
v

5-61

This program gives an upper bound on the error of the power series
expansion. The maximum time - T is the left argument, and the matrix of column
vectors - A is the right argument.

5.6.5 Conclusions
The above procedure for determining the failure probabilities of a

fault tolerant computer has several advantages over the earlier approach.

1. A1l state probabilities are obtained as a function of time.
This allows a more detailed study of a given computer configuration.

2. The model is general for any number of computers only the tran-
sition matrix is needed to obtain numerical results on a
computer,

3. It is much easier to obtain approximations for the state
probabilities as a function of time.

5-62

6.0 SIMULATION
6.1 OBJECTIVES OF SIMULATION

The function of the simulator portion of CAST has been described
briefly in the Summary and is treated in more detail in Section 8.1. Trans-
lating this function into simulation objectives yields the following three
items. The simulator should produce:

1. The fault-tolerance effectiveness of each of a wide
variety of reconfigurable computer system configurations;

2. Global parameters for use in analytic modeling;

3. The behavior of a configuration in various fault
" environments. '

The requirements imposed on the simulator design by these three
objectives are examined in the following paragraphs.

6.1.1 Configuration Fault-Tolerance

Measures of fault-tolerance have been defined in Section 4. The
simulator should be able to produce these for a wide variety of configurations.
This requirement can be satisfied in a reasonable way by structuring the simu-
lator such that the various fault-detection and recovery algorithms are imple-
mented as subroutines. Thus a configuration can be described by specifying
the applicable set of subroutines, plus the necessary parameters. This simu-
lator structure provides vefsati]ity and modularity, and minimizes the impact
of addition of new subroutines.

6.1.2 Determination of Global Parameters Used in Analytical Modeling

Global parameters are those required when using the analytic model
for analysis of a configuration. An example will help in understanding what
we mean. The reader may recall that in Section 5.4.1, the transient coverage
in triplex, cT'has_been defined as the conditional probability that a triplex
system recovers, given that a transient has occurred.

If a configuration is analyzed by mathematical modeling, c. is one

. T
of the input parameters of the model. However, it is difficult for the designer

to evaluate Crs since it may depend on:

6-1

. the location of the transient fault

their occurrence rate ¢

the time between occurrence and detection of a fault

the recovery algorithm used

By introducing these factors into the simulation, and gathering statistics
describing the computer system reactjon to transient faults, C; can be esti-
mated by computing the ratio of the number of successful recoveries from
transient fauits to the total number of transients.

Thus, for the configurations where the mathematical modeling is
applicable, one simulation run gives an estimate of these parameters of the
modeling. Then using the model, the reliability, R(t), of the configuration
can be easily determined for any given time t.

6.1.3 Fault Environment

The fault environment provided in the simulator should be suffi-
ciently versatile to provide all expected possibilities to test the recovery
algorithm utilized in the configuration under simulation. Thus Tow or high
failure rates, existence and duration of transient bursts, long transients,
mathematical fault-distribution functions, etc. must be provided. Implemen-
tation of this fault environment should be accomplished so as to provide
maximum flexibility of environment choice by the user.

6.2 GENERAL ORGANIZATION OF THE SIMULATION

6.2.1 General Approach

Certain aspects of the general approach to the design of the simu-
lator are implicit in objectives 1 and 3, namely the need for versatility
and flexibility. There is a third, as-yet-unstated requirement, and that is

for an efficient implementation that results in a reasonable computer-cost
per run.

The versatility and flexibility requirements can be satisfied by
designing a modular simulator that is easily modified (flexibility), and that
models many configuration and fault-environment possiblities (versatility).

Since we are concerned with behavior of the computer system following occurrence

of a fault, we can obtain an efficient implementation by designing a "fault-

6-2

driven” simuTator, rather than one that simulates the continuous operation
of the system. '

Having chosen the general structure of the simulator, the next
choice is that of implementation language. There are three contending
possibilities. These are the computer system simulation languages such as
ASPOL, ECSS, CSS-1I, etc.; the discrete-event languages such as SIMSCRIPT,
GPSS, SIMULA, etc.; and finally the general purpose languages such as FORTRAN.
The computer system simulation languages offer ease of inclusion of peripheral
devices such as tapes and discs, and the gathering of statistics as to their
use. However this is not an issue for the RCS study. Similarly, the discrete-
event simulation languages offer easy simulation of user queues and related
items but these are not a factor in the type of simulation considered here.
Thus we are left with the general purpose languages. Since FORTRAN is available
both to U]trasysfems and NASA Langley, and provides the possibility of good
program efficiency, this is the language that was chosen.

6.2.2 Organjzation of the Simulator

The approach taken to the formulation of the simulator is somewhat
similar to that described in KRUU 63. Utilizing an extension of this approach,
the computer system is seen as a finite state automaton. A state is defined
by:

1. The number of good computers.

2. The action performed by the system at a given time.

A simplified state-diagram of the computer system is presented in Figure 6.2-1.
This diagram shows all the states and the transitions between states, but does
not show all state entry and exit conditions as does Figure 6.4-1. Basically
the computer system states can be divided into five categories. These are:

NORMAL OPERATION
" Multiplex (N23)
’ Duplex (N=2)
Simplex (N=1}

TRANSIENT-FAULT RECOVERY
Rollahead
Memory Copy

6-3

Rollback
System Restart

PERMANENT-FAULT RECOVERY
Introduction of a Spare

DIAGNOSIS
Diagnosis

FATLURE

System Faiiure

A more detailed state diagram and the related details are provided
in Section 6.4,

The simulator program consists of a collection of FORTRAN IV computer
programs (to be run in a CDC 6600 CYBERNET computer environment) organized and
designed to satisfy the objectives of simulation (Section 6.1). The main routine
in charge of directing the processing flow of the simulation is designated the
Driver. A collection of subroutines are accessible to the Driver via FORTRAN
CALL statements. Each of the computer system states (Section 6.4) are repre-
sented by a subroutine. Other supportive subroutines perform statistics gathering
and probability generating functions. The gross organization of the simulation
is presented in Figure 6.2-2.

The simulator program is structured to simulate the detection of
faults within a computer system and the computer system's successful/unsuccessful
recovery actions taken in response to the detected faults. FEach simulated mis-
sion is assigned a mission time. A simulation run consists of the repetitive
continued simulation of a designated number of missions (each with the same
mission time).

The initialization box of Figure 6.2-2 encompasses mainly of reading
the run parameters and generating the fault table (see Section 6.5},

The simulation box is detailed in Figure 6.2-3. As stated earlier
the simulation is fault drijven. Nothing happens in the simulator until a fault

occurs., This is very important in terms of simulator efficiency. The computer
time spent in one run will be roughly proportional to the number of faults and
not to the simulated mission time.

6-4

§-9

NORMAL
MULTIPLEX .|« | ROLLAHEAD SYSTEM
IN23) | RESTART
OPERATION
A
y ' !
INTRODUCTION - DUPLEX MEMORY SYSTEM
OF OPERATION |=——] P ——=t A
el COPY , FAILURE
ROLLBACK SIMPLEX ROLLBACK
IN = DIAGNOSIS 1 .1 OPERATION |=—» IN
DUPLEX SIMPLEX
FIGURE 6.2-1 SIMULATOR STATE DIAGRAM

No4

re Runs

«D

Initializations

| s

Simulate given
number N
of missions

[

Report

FIGURE 6.2-2 GROSS ORGANIZATION OF THE SIMULATION

6-6

From box 2 of figure 6.2-2

Figureb.2-2 Determine
mission in

which the
- fault occurs

| '};

Simulate .RCS
handling of
the fault

L

Gather
Statistics

Next

fault in
the. same
missio

FIGURE 6.2-3 PRINCIPLES OF A FAULT DRIVEN SIMULATION
(BOX 3 OF FIGURE 6.2-2)

6-7

Figure 6.2-4 shows how the simulator makes the transition between
the various states. For example, when simulating a triplex configuration,
simulation begins in State I. The fault table is scanned, a fault is found
and its detection time is determined. The next state is determined (variable
NEXT) and the transition occurs. The simulation continues in a similar
fashion for each state until the mission ends.

6.3 INPUTS/OUTPUTS

6.3.1 Inputs

The parameters of a simulation run are listed below. An asterisk
indicates that an explanation of this parameter is given in a following
subsection.

Number of simutated missions
Mission dependent parameter
Mission time

Machine-dependent parameters
Permanent failure rates
BITE Detection probability of a CPU fault*
BITE Detection probability of a memory fault*
Self-test program efficiency*
Seif-test program duration

Configuration-dependent parameters
Number of computers
Number of spares
Dedicated/Non dedicated EEMs (External Electronics Modules)*
Probability that an EEM fault hits the bus
Number of non-dedicated EEMs
Dedicated/Non-dedicated buses (see Section 6.5.7)
Number of non-dedicated buses
Number of external devices

Coverage and relative failure rate of each device and of
the buses

Applicable recovery algorithms*
Recovery algorithm characteristics

6-8

From box 2 of figure 6.2-3

Simulate State |

(Normal N-Plex
Operation)

NEXT=? 1,

2] Simulate State 11

1 Simulate State Il

——— To box | of figure 6,2-3

Simulate State X! —»@

o

FIGURE 6.2-4 RCS HANDLING OF FAULTS
(BOXES 3, 4, 5 OF FIGURE 6.2-3)

6-9

Duration

Unacceptable recurrence interval*
Maximum number of rollbacks
Program Integrity*

Memory-copy Efficacy

Scheduling parameters
Iteration period
Time between comparisons
Major and minor cycle durations
Asynchronous/synchronous mechanism

Environment dependent parameters
Transient failure rates
Transient failure duration

This 1ist of inputs is presented in a slightly different and more
detailed way in Figure 6.3-1. Filled in spaces contain ef{ther the implicit
value of a parameter or its name. For example, among the transient fault
recovery parameters, we see that the duration of a rollback is the time between
comparisons and that its efficiency for a CPU transient fault is always 100%.

6.3.1.1 Detection Probabilities

These are the probabilities that a computer detects its own faults
(except through diagnosis). This is not significant for N-M-R configurations
(N23) since all faults are detected and located through voting or comparison.
However, these probabilities become critical in duplex and simplex. In duplex,
faults are detected through comparisons. However, if no other RETs are
available, it is not possible to isolate the faulty computer. In simplex,
these RETs are necessary, since they provide the only way to detect transient
faults.

For simplex operation the detection probability of CPU faults
is Tow. Faults in the CPU usually cause only a wrong output which will not
be detected by BITE. However some will be detected. Those are the ones
which cause a forbidden address to be computed or those which modify the
computing sequence in such a manner that a go/no-go counter detects them,
Intuitively, we can set this detection probability in the range from 5 to 20%.

h-10

PHYSICAL PARAMETERS . 3) PARAMETERS AFFECTING FAULT DETECTION AND ISOLATION IN THE COMPUTERS §) TRANSIENT FAULT RECOVERY PARAMETERS

a) Design Decisions a) Detectfon Efficlency
Efficiency for | Efficiency for Maximum Number
by f C 3 2 1 CPU Fault Memory Fault Duration of Trials Time Limit In Use
Number of Computers ar move
Number of Computers 7 Rollahead (10) Progr Del ayus) + Rollahead Buration wal1a] Recurrence Interval | yes'10)
Dedicated/Non Dedicated EEMs Comparisons 100% 100 | 0% 100% Sur\?f:r:bﬂ{ty - - Wax. Number TALS) {10
Humber of EEMs Rollback Time Between Comparisons of Bollbacks NA Yes
m CPU BITE (17 ' n
Dedicated/Non Dedicated Buses Memory Copy NA 'gmg‘:cop}’ Memory Copy Duration NA Recurrence Interval
Number of Buses (1) Menory BITE 4 y
{10 (0} (14) (148
Number of External Devices Per Bus S%st_aE1Restart 100% 100% System Restart Duration NA NA ‘{es(m}
uration
Number of Spare Computers b) Tsolation Efficiency®! :
1
Nunber of Computers | 3 or more [2 &) PERMANENT FAULT RECOVERY PARAMETERS:
b) Fatlure Characteristics . (7} (10} Ux(m)
. Comparisons 100% Always done by switching off or fgnoring the faulty computer,)
once the permanent has been vrecognfzed. If a spare is available,
(3| ,(3) | _(3) (3} CPU BITE it is switched in. f
A I T 1y
w0 Memory BITE !
CPY (1) NA - T3] Number of Computers 3 or more 2 1
5 Diagnosis I
Memory (1) el (sTP) [Efficiency 1008110 | s7p Epficiency 0z110}
1
EE"“ 2) (111y NAU) buration O_UU) Dia_ngnOS‘ls + NA-(‘IT)_
Bus and External) 4) PARAMETERS AFFECTING FAULT DETECTION AND ISOLATION IN THE EXTERNAL HARDWARE . g:ndsgfr‘e Switch-off Duration
Devices (I NA) 2) EEM (1 tioning
‘ Ti
Impact of EEM Fallure on Bus ime
—
Number of Faults in the Bus Number of EEMs 3 or more 2 1
0
Ay Detection Efficiency | 1002000 | 1oostY) ozt10) FOOTNOTES
T LU N
Nurgb:r of]FSuHi:s in Each IsoTation Efficiency ‘IUU%UD] EEMCoverage{IG] N-."t-U !
xternal Device
Iy (1} Implicit parameter when each EEM/bus {s dedicated to (8} This parameter is valid only far permanent faults. Diagnosis is
v b} Bus and External Devices one computer, no help with transient faults.
- Bus {2) The bus by {tself is considered as an external device. (9) Isolation efficiency 1s 100%, ance the fault has been detected in simpiex.
: H : . 10) impli:it parameters.
SOFTHARE_CHARACTERISTICS Number of Buses 3 or more 2 1 (3) x: permanent fault rate; s : dormant fault rate. (
— 0y A0} 7] v: transient fault rate; 1/ mean transient duration. {11) These| parameters are not applicable with dedicated FEM: in this case, faults
Svmeh A hrono Detection Efficiency [100% 100% 0% {4) Non applicable when there is no spare. in the EEM are considered as equivalent to CPU faults.
chronous/Asynchronous . - . \
Sgﬂedu'ling Mecﬁanism Tsolation Efficiency | 1008070 | Bus Coverage ALY (5) ;n this Examplﬁ, it 1sfas?:medtthat the four external (12} These| parameters are 0 with a software TMR since there is no EEM.
- - Bvices have Lhe same Tault rate. {(13) Rollahead is used for 3 or more computers.
Iteration Periad) {6) Non applicable when synchronous scheduling. Rollback is used for 2 or 1 computers.
: : - For Each External Device {7} These parameters are implicit. Hawever, the 100% {14) Non applicable.
Minor Cycle Duvation Frici >
Major Cycle Duration Nunber of Redundant Devices 3 or more 2 ! ﬁas1§l§2°£xéﬁc‘f§2‘j',‘e?,2’,“*‘;&:,59: 1&3?1“,::}2,."’32%_ (15) Rollahead is preceded by an imposed delay to allow the transient to dissipate.
{In terms of iterations} Detection EFficiency 1003019) 100200 0z Thus BITE feature may speed up detection. {(16) Irrelpvant when EEM are dedicated,
7
Time Between Comparisons Isolation Efficiency 1001“0) Sensor Coverage I‘l..t\.l]
Maximum Down Time
Relative Size of Minor
Cycle Program
Interrupt Rate

FIGURE é.3-1 LIST OF INPUT PARAMETERS

6-11 | . - ;7;

The main technique to detect a memory fault is parity encoding. When
it exists, the probability of detecting a memory fault is 80%. When it does
not exist, this probability is quite smalter.

6.3.1.2 Self-Test Program Efficiency

Self-test programs (diagnosis) are run in a duplex system where a
fault has been detected but not isolated. Nofe that if the fault is transient,
the self-test does not diagnose it, since it Tikely will have dissipated when
the test is run.

6.3.1.3 Dedicated/Non-Dedicated EEMs

If the configuration includes some additional hardware for the External
Electronics Module, the consequence of faults in this hardware has to be assessed.
We partitioned the configurations in two classes. In the first class (dedicated
EEMs), we assume that a fault in the EEM is equivalent to a fault in the compu-
ter and some times on the corresponding bus. In the second one (non-dedicated
EEMs), we assume that EEMs are independent from the computers. The system can
work as long as one computer and one EEM are good. Note that the dedicated case
includes software TMR.

6.3.1.4 Existing Recdvery Algorithms

In the present simulator, the recovery procedure for a NMR system is
the state vector transfer. Memory copy is optional.

6.3.1.5 Unacceptable Recurrence Intervals

Once -a recovery propedure has failed for a certain fault, it is use-
less to attempt to recover through the same procedure. Some other one has to
be chosen. If after completion of a recovery procedure, a fault recurs in the
same computer after a time less than the unacceptable recurrence interval, the
system decides that the recovery procedure was unsuccessful and attempts some-
thing else. Usually, the recurrence intervals will be chosen equal to the
duration of one major cycle (Section 5). The rationale is that the memory is
thoroughly exercised in one major cycle.

6.3.1.6 Program Integrity

This probability is Tisted with the other recovery algorithm charac-
teristics because a rollback and a rollahead (state vector transfer) cannot

6-12

succeed when there is a program memory damage. Program integrity is strongly
linked to the type of memory: an NDRC memory is much better in this respect
than a DRO memory. The fact that there is no need to restore the information
makes it very unlikely that a transient fault damages instructions or con-
stants. In addition, in most NDRQ applications, the write voltage for the
program memory is disabled except when altering the program under AGE control.

6.3.1.7 Memory Copy Efficacy

This is the probability that a memory cony corrects a transient
fault. They only reason why it should not succeed is that the transient
had hit the little {(micro) program initiating the memory copy. This is very
unlikely since this program should reside in a read only memory or microstore.

6.3.2 Qutput

Output consists of the following results.
1. Number of system failures.
2. Causes of system failures:

- Too Tong unavailability. Failures caused by repeated
recovery procedures lasting too long.

- Non isolated faults. In duplex, even though a fault
may be detected, it is possible that the diagnosis
routines are unable to isolate the faulty computer.

- Simplex failures in simplex mode, permanent faults,
undetected or unrecovered transients cause system
failure,

- EEM failures.
- I/0 and bus failures.
3. Number of switches to

quadruplex

triplex

duplex

simplex
4. Transient coverages in multiplex, duplex, simp1ex.

5. Diagnostability in duplex.

6-13

6. Proportion of catastrophic faults. These are the faults
which cause a system failure even though there are 3 or more
computers in the system when they occur. (As long as the
Poisson hypothesis holds for fault rate (Section 4.3.1), this
number should be 0).

7. Number of missed iterations.

Causes of system failures are recorded because the dominant system
failure mode points to the area in the design where improvement would be
significant.

Similarly the number of switches to duplex and simplex are
recorded since these are less effective and Tess reliabie modes. Further-
more, these results are useful when studying a non (fully) adaptive system.
For example, if a TMR system cannot degrade to a simplex mode, all switches
to simplex should be considered as failures. Thus, non adaptive configura-
tions are just considered as a special case of adpative configurations. They
don't need any special parameters. Coverages and diagnostability are determined
since these are parameters to be used in analytical modeling.

6.4 STATE DIAGRAM

Figure 6.4-1 presents the detailed state diagram of an adaptive
NMR configuration. The algorithms involved in States I, II, III, and VII do
not vary for three or more active computers. Thus we avoid a proliferation
of redundant states by maintaining a count in the simulation of the currently
active computers.

6.4.1 Normal Operation (3 or more Units)

In the normal operation state with three or more computer units, the
outputs of the computers are periodically compared. Disagreement of one or
more computers constitutes fault detection and requires exit from this state.

As Tong as two computers are fault-free, the rollahead recovery
procedure is used and, if it is not successful, the memory copy. If all
computers disagree at the same time, a system restart is initiated.

THIS PAGE INTENTIONALLY LEFT BLANK

FOLDOUT FRAME

2,3 B

STATE 1 MNormal Qperaticn
Multiplex (N23)

Description: The system is executing its

STATE 1T State Vector Transfer or Rollahead

Description: A “good" computer transfers to
1| the bad one the information necessary fer
the resumption of execution, assuming that no

normal application routines under the super-
vision aof the executive,

Entry Conditions:

1} Hormal multiplex system start up.
2) Completion of recovery by:

2.1 State Vector Transfer

2.2 Memory-Cepy 2.1

damage has occurred in the program memory.

Entry Condition:
1) Detection of a fault in State I,

Exit Conditions:
A A) Completion of the transfer after the

2.3 System Restart

2.4 Replacement of One Computer
by a Spare

2.5 Switching off Cne Computer

2,5

ROLLAHEAD OURATION has elapsed: qo ta
State I. The rollahead is successfu}
acgording to the ROLLAHEAD SUECESS

PROBABILITY and if the fault had dis-
0.A appeared before entering the rollahead

Exit Conditions:

A} Detection of a fault: go to start
of a state vector transfer recovery
attemot after the DELAY BEFQRE
RECOVERY has elapsed.

B) Simultaneous faults: go to system
restart.

2.4 2.5 z,2

A,C.A B.8

B.A

STATE XI1 Introduction of a Spare

Oescription: A spare is checked, condi-
tionad and switched in by a "good" computer,

Entry Canditions:

‘_.

{fault duration smaller than DELAY

BEFORE RECAVERYY.

Identification of a recurrent favlt

{when State 1I 1s called twice in less
than the ROLLAHEAD RECURRENCE INTERVAL
duration): go to State VII (memory copy).

B

—

[

=

b

STATE TIT System Restart

Description: This is the recovery procedure
necessary for a multiple fault. It can consist

of extensive diagrostics and comparisons, to
determine which memory centents are still

correct, There may be a reload from a backup
memory. Execution is restarted from a well defined
restart point, Depending on the application, this
procedure may or may not exist.

Entry Condition:
1) Detection of simultaneous Faults in State 1.

Exit Conditions:
K} Completion of the restart after the RESTART

DURATION has elapsed.
B) Too many missed iterations: go to system

failure,

€} Toa many missed iterations: go to system
failure,
D} Another fault is detected during the
rellahead. The recovery 1s abandoned.
D.A} N24: go to State 1 and Ne=N-1.
0.B} N=3: go to State IV.

(] B

A 1
STATE VI1 Memory Copy

A.B. T.A Description: A "good" computer transfers to the
C.B| bad one the content of its memory and the state
vector. The memory copy is done on the base of

1) ldentification of a recurrent fault in
State VII and a spare is available.

2) Identification of a bad spare and a
second spare is available.

Exit Conditions:

A} Completion of the conditioning: go B.C,C.B

4 B.A| cyele stealing. Computation continues in the

STATE ¥V System Failure

Description: Heaver or Hell,

_ good computers. It corvects the transient with D
STATE 1V Dupiex (N-2) ‘ a probability equal to the MEMORY-COPY COVERAGE,

Description: The system is exe-:uting!; its normal 2 B.Cl ¢ try Conditian:
application routines but 2 computers only are OK. mery tanditian:

1) Identification of a recurrent fault in

to State [with S—5-1, after the
CONDITIONING TIME has elapsed.

} Identification of a fault in the spare.
1f 522, restart State XII with S—5-1,

} If 5=1 and N4, go to State I with
N—N-1 and S=0.

} If §=1 and N=3, go to State IV with 5=,
& fault is detected in a computer (but
the spare):
] If N>3 go to State T with N—N-1.
J If N=3: go to State IV.

STATE VIIT Rollback in Ouplex

31 Entry Conditions: State II,
T} Normal duplex system startup. ; PPN
2) Identification of a permanent fault and no Exit Conditions:
spara 15 available. A) Completion of the memory copy after the
3} Occurrence of a fault during conditioning MEMORY COPY DURATION has elapsed: go te
. a spare. State I.
A 4} Occurrence of a fault during a recovery procedure. B) Identification of a permanent fault

{when State VII is called twice in less

5) Completion of recovery by rollback.
than the MEMORY COPY RECURREKCE INTERVAL

<

Descriptign: The 2 cemputers repeat the last
segment of programming, hoping that this time they
wiil agree.

Entry Condition:
1) Detection of a fault in $tate IV.

Exit Conditfons:

A) Successful completion of the roliback:
the probabitity of success of a rollback
15 the same as the ROLLAHEAD SUCCESS
PROBABILITY. Rollbacks are repeated as

Exit Condition: duratfon}.

1) Detection of a fault: go to start of rollback. 8.A) ?i:ﬁggug,ﬁi:f;‘fﬂ:‘:&gg to State XII

B.B) :u ﬁp«;re and N24: go to State [with

B.C) No spaf'e and N=3: go te State IV (duplex).

) Another fault is detected during the
memory capy. The recovery is abandoned,

; M2%: go to State [and N—N-1.

}

N=3: go to State IV.

AT - Too many missed iterations: go to system
TATE IX Diagnosts failure, (The maximym number of itera-
tions we can afford to miss is MAXIMUM
DOWKTIME divided by ITERATIGN PERIOD).

Description: Each computer runs & diagnostic on itself,

Entry Condition:
1} Unsuccessful rollback.

Exit Conditions:

A) Successful completion of the diagnasis: go to
State X (simplex). The duration of the diagna-
sis is computed from the MEAN DIAGNOSIS TIME.

Unsuccessful diagnosis: go to system failure. A WL Description: The last good computer is executing |A

STATE % Simplex (N=1)

B

Entry Condition:
A) Failure conditions ave listed in
each state.
Exit Conditien:
1) Alas, alas, alas -- no exit,

The proportion of successful diagnosis 1s given the normal application routines.
by the 5TP EFFICIENCY,
1 C) Too many missed iterations: go to system failure: Entry Conditions:

many times as the MAXIMUM NUMBER OF
ROLLBALCKS,

B) Unsuccessful rellback: go to start
diagnosis attempt.

C} Too many missed iterations: go to
system failure,

The rallback duration is equal to the TIME

BETWEEN COMPARISONS. Too many rollbacks may
cause a missed iteration, if the minor cycle
cannot camplete during the ITERATION PERIOD.
The MAXIMUM DOWNTIME gives the maximum number

it is quite possible that because of successive i
rollbacks and diagnosis, the system missed mare R Eﬂﬁi—ﬁéﬁuhag@?ggzli after the ISOLATION

iterations than ailowed by the MAXIMUM DOWNTIME, 2) Completion of recovery by rallback

o

B,C Exit Conditions:

A) Detection of a fault: go to start
rollback. The fault is detected
according to the DETECTION PROBABILITY. \

B) Undetected fault: go to system failure.

.

STATE XI Rollback in Simplex

Description: The computer repeats the last
segment of programming hoping that this time
the error conditicn will not reoccur.

Entry Condition:
1) Detection of a fault in State X.

Exit Conditions:

A) Completfon of the rollback: go back
to State X. (The prabability is still
the rollahead success probability).

B) Too many missed iterations: go to
.system failure. (The same remarks as
in State VIIT - exit C apply,

f

of iterations we can affard to loose.

6-1b

PRECEDING PAGE BLANK NOT FILMED

FOLDOUT FRAML
/ .
FIGURE 641 SIMUEATOR DETAILED STATE DIAGRAM

6.4.2 Rollahead {or State Vector Transfer)

- The rollahead state is entered to simulate the computer system's
attempt to recover from a detected single fault. The state vector (consisting
of program variables and all register contents) of one good computer is used
to replace the non-agreeing computer's state vector. However all transient
failures are not corrected by this procedure since a bad instruction cannot be
restored. The approach taken in the simulation is to provide for the specification
of a rollahead success probability. This probability can be formally defined
as: :

Psuc = Pr [fault is corrected given that a fault has occurred,
has been detected, and its physical cause has dis-
appeared when correction begins] :
An analysis, which gives consideration to the type of memory (e.g. 2 1/2D, 3D,
DRO, NDRO, etc.) and the consequences of memory faults, will yield an estimate
of the rollahead success probability (or program integrity).

6.4.3 Memory Copy

- This recovery procedure is entered after 2 specified number of rolla-
heads have been completed unsuccessfully. The memory contents of one good
memory are transferred into the faulty memory. In order to avoid interruption
of computation, the transfer is effected on the basis of cycle stealing. Tt
ends with the updating of the state vector of the faulty computer.

Since, during a memory copy, normal application routines continue,
it is possib1e that a new fault shows up. The following {conservative) assump-
tion has been made in order to simplify the simulation. Upon detection of a
second fault during a memory copy, the memory copy procedure is abandoned and
the computer for which this memory copy was intended is discarded,

It is assumed that memory copy provides recovery‘from trahsient
faults which have disappeared when the memory copy beganVWith a probability
equal to the memory copy efficacy.

6.4.4 System Restart

The system restart state is entered when all computers disagree upon
comparison. The recovery procedure from this state may consist of a memory

6-17

verification. Relevant memory locations are read, voted upon and restored.
Extensive diagnosis may also be run. Finally, if a backup memory is available,
reloading may be possible. Then the application program is reinitiated from
the restart point.

After a successful system restart, the system returns to the normal
operation state. However, since all computers stop their normal computation
during a system restart, this recovery procedure is time critical.

Note that in a benign fault environment, the probability of having
a system restart is quite small (=1 for 1 million faults). However, system
restart is necessary if the fault environment is so harsh that bursts of
faults can hit several computers at a time or if the probability of a

short power failure is not negligible.

6.4.5 Introduction of a Spare

If a spare is available, it should be activated once a permanent
fault has been recognized. As part of the activation process, the spare is
checked and conditioned by one of the good computers. In the state diagram
of Figure 6.4-1, spares are not available for the duplex and simplex simula-
tion. This is thought to be compatible with the expected applications.

6.4.6 Normal Operation (2 Units)

The normal operation (2 units) state is entered upon the determina-
tion that a permanent fault exists in one of the three computers of the computer
system. This state is quite similar to the normal operation (N units) state,

except that the only available recovery procedure is program rollback. N

6.4.7 Rollback

The rollback state is entered upon the detection of a fault when the
computer system is in the normal operation (2 units) state. Rollback is the
term used to describe repetition of the program segment executed just prior to
the detected output disagreement. The state vector at the beginning of each
program segment is maintained in order that the rollback procedure may be
accomplished.)

After the program segment has been repeated, the outputs of the two
computers are compared; if the correction is successful, the computer system

6-18

switches back to the normal operation (2 units) state. If the outputs differ,
the system rolls back again; this unsuccessful recovery process continues a
predetermined number of times before changing the computer system state to
diagnosis. .
Since both of the active computers remaining in the computer system
must stop their normal computations during a rollback, this computer recovery
procedure may be time-critical. However, if comparisons are frequent enough,
a rollback should not last more than a few milliseconds.

6.4.8 Diagnosis

In triplex, voting provides a very easy and efficient way of isolating
the faulty unit. Unfortunafe]y, a disagreement upon comparison in duplex does
not indicate which of the computers produced the wrong value. That is why the
main recovery procedure in duplex is the rollback since there is no transfer

of information from the good to the bad computer for such a procedure. But,

if the rollback does not succeed, the bad computer must be isolated. For that
purpose, self-tests are run. If they are successful, the faulty computer is
isolated and the system switches to simplex. If unsuccessful the system is
unable to decide which computer is faulty and the system fails. Diagnosis pro-
grams are obviously time critical. Note that it would be possible to -include

a memory copy which would take place once a diagnosis had been successful: the
memory of the good computer would be copied into the bad one. However, this
improvement is not so good as it would seem since many transients cannot be
detected through diagnosis.

6.4.9 Normal Operation {Simplex)

In simplex operation, comparison is no longer available for detection
of faults. We must rely mostly on the RETs to detect faults. CPU transients
are difficult to detect. Some may be caught through go/no-go counters and
storage protection. Memory faults are easier to detect. Parity check is
especially useful. When a fau]tkis‘detected a rollback is initiated. If the
fault is not detected, a failure occurs. |

6.4.10 Rollback in Sihp]ex

This is the same procedure used in duplex. Since it is the only
recovery algorithm available in simplex, it is repeated as long as it is not

6-19

successful. If recovery from the fault cannot be effected, a system failure
will occur when the system has been down too long.

6.4.11 System Failure

The system failure state is entered when the system is unable to
run properly any longer, or when computation requirements have not been met for
too long a period of time. Upon recognition of the condition of a system
failure, the DRIVER program discontinues the simulation of a mission.

Causes of failures are:

—
.

Excessive time in rollahead, memory copy, or rollback:
It should not happen since the system must be designed
so that a recovery procedure does not endanger it. How-
ever it might happen that the continuous repetition of
such procedures be fatal for the successful completion
of the mission.

2. A too long system restart: A system restart is a very
rarely called procedure. But it is long (a few seconds),
and may not always be tolerable.

3. Diagnosis incomplete when available recovery time expires:
Normally, diagnosis follows rollback. It is possible
that these two recovery procedures sometime take too long.

4, Undetected faults in simplex.

5. A too long rollback in simplex: This happens when a
permanent occurs or when a non-recoverable transient
OCCurs.

6. EEM failures: 1In case of non dedicated EEMs the system
fails when all EEMs fail or when all but one fail and the
computers are unable to decide which is the good EEM.

7. Bus failures: The system fails when all buses fail or
when all but one fail and the computers are unable to
decide which is the good bus.

8. Actuator/sensor failures.

6-20

6.5 SIMULATOR TMPLEMENTATION

Because of the fault-driven nature of the simulator, the first
activity in the simuTation is the generation of a ‘table of faults occuring
in 2 given number of missions. The fault generator and the computer-system-
state subroutines are described in the-fo]1ow1ng subsections.

.76.5.1 Fault Generation

6.5,1.1 Introduction

A major portion of the simulator is dedicated to the generation of
faults according to mathematical algorithms which describe the occurrence of
faults in the various components of the computer system. Two approaches to
handling this problem were considered:

1. Generation of one fault at a time.

2. Generation of a fault table describing the faults which
occur in the computer system between 0 and a time T.

The first approach is suitéb1e if we consider only sihg]e faults
and if we simply describe fault occurrences w1th1n the computer system e.9.,
the fault-arrival rate in the system is A and the probability that a fau1t is
.th
in the i

in LYON 62,

part of the computer system is Pi' This procedure is described

Since we must deal with transient failures also, we want to know

. how the computer system behaves in case of'mu1t1p1e faults. Furthermore, if
the faults do not occur according to a Poisson law in all modules (burst of
transient failures for example), the method described in LYON 62 is not
readily applicable.

, A more efficient and more general approach is to Qenerate a fault
table prior to simulation. This also makes the simulation program more
" functionally modular since, once the simulation.has begun, we have only to scan

the faulit-table to determine when and where the next fault occurs.
6.5.1.2 Parameters

The parameters neceséary to generate the fault table for a simu-
lator run are a part of the parameters of simulation which are input by the
simulator user for each simulator run.

6-21

6£.5.1.2.1 Description of the Computer System

The computer system to be simulated is composed of n identical
computers, each composed of m modules.

6.5.1.2.2 Description of the Fault Distributions

For each of the m modules, the distribution functions to be used
in the generation of both permanent and transient faults must be indicated by
the simulator user. Specific subroutines for the chosen distribution functions
are then called and the parameters of the distribution are passed to these

subroutines.

For permanent faults, only the Poisson distributions have been
implemented. This is generally considered in the Titerature to be most
realistic. '

For transient faults, Poisson and burst distributions have been
considered. Poisson distributions are considered because of their tracta-
bility and acceptance for the permanent fault case. Burst distributions are
thought to be important because many transients likely are caused by compo-
nents working near the 1imits of their to]erance'specifications. As long as
the conditions do not improve, faults will occur often in these components.
A burst of transients is defined by its duration and the rate of transient
occurrence during the burst. Bursts occur according to the burst rate.

6.5.1.2.3 Description of the Fault Duration

For each of the m modules, the distribution function of the
transient failure durations to be used by the simulator programs must be
indicated by the simulator user. Specific subroutines for the chosen distri-
bution functions are called by the Driver and the subroutines receive the
parameters of the distributions. |

At the present time, the uniform and the exponential distributions -
have been implemented.

1. Uniform Distribution -- The transient failure duration is
uniformly distributed between a minimum and a maximum
duration.

622

2. Exponential Distribution -~ The transient failure duration
~ is exponentially distributed. The mean duration is 1/y.

6.5.1.3 Description of the Fault Table

The fault table consists of 300 records ordered accordihg to the
occurrence time of each fault. This table can contain up to 150 permanent
faults and 150 transient faults. It has the following record format:

Occurrence

Time Duration| Module | Computer

Permanent failures are identified by a duration longer than the
mission time.

6.5.1.4 . General Organization of the Fault Generator

The first step consists of generating a table of permanent failures
and a table of transient failures for each module in the computer system.
Then these tables are merged into one sequentially-ordered (master) fault
table. The general organ1zat1on of the fault generator is presented in
Figure 6.5-1.

6.5.1.5 Determination of the Occurrence Time of the Faults Accord1ng
to a Poisson Distribution Function

Faults occurring by a Poisson distribution process have a probability
that one fault occurs during a small interval of time, dt, as follows:

P1 = Adt. (See PARZ 60).
The probability of no faults, Po’ occurring during the time interval
1-xdt, and the probability of more than one fault occurring is 0.

dt is, P0

xa

Poisson distribution process has two very important properties:

1. It is memoryless: This means that the probability of a fault
occurring between times t and t+dt 1is independent of fault
occurrences before time t..

6-23

Parameters:
Number of computers n

Number of modules m
Start in each computer.

e nter the perma-

nent, transient . th
distributions and Flr}gutlr;e i
duraiion

distribution

Enter the Decide randomly \
parameters of finwhich computer
the distributions the ith fault
occurs Merging
) '] > into one
Generate the 3 Record the table
occurrence time {pa gumeters of the
of the permanents ith fault in the
Generation table /
> of2m '
Generate the tables imi 4+ |
occurrence time
of the transients)
! No
Forcachtransient
generate its
duration Yes

l.--—l. +1

Last modufe

FIGURE 6.5-1 GENERAL ORGANIZATION OF THE FAULT GENERATOR

6-24

2. The probability density function for the random variable, TT, i.e.
the interarrival time between two consecutive faults, is

(t) = xe 't

Thus the probability distribution function of T, is:

t
f fr (w) au
0

- At

P[T, < t]

=1-e

Thus the probabiiity of having no fault at time t is:

R(t) = e M

A difficulty arises at this point since the random number generator
(function) available in the CYBERNET system produces outputs which are uniformly
distributed on the interval 0<U<1. The outputs of this generator can be
converted using the approach deécribed beTow.'(HILL 70, SHRE 66).

We are concerned with the random variable T,, the interarrival
time between faults, whose distribution function is given above as

PT,<t] = 1 - e

For the purposes of the simulation we wish to obtain values of t. We now
note two important facts. First, 0<P<I. Second, by algebraic manipulation
it is possible to solve for t, e.g:

-1 -
= £n (1-p)
Thus, for any value of P in the va]id range, a value of t can be calculated.
By generating values of P using the random number generator, which produces

uniformly distributed numbers between zero and one, t can then be

calculated.

A more formal description of the process follows. Using the
random number generator which gives a number U uniformly distributed on the

C6-25

interval 0<U<1, we have to compute T, which is exponentially distributed.
That means that we have to find a function f{U) such that:

T, = f(U)

and PlUsul = u (uniform distribution)—> P[T,st] = 1oe At
(if O=u<l)

If T, = f(U), we can define the inverse function g(T,) such that
U= g(T,;).
Thus, we have:
PIT,st] = 1-e"At
= P[f(U) st]
= PlUsg(t)]
= g(t)

The last equation is true since U is uniformly distributed on
the interval, 0<U<1. Thus we know that the unknown function f(U) is the
inverse of the function g(t) = 1-e A

Hence:

t =—~1xfn (1-u) = flu)
Since we have just found the function f, we can write
__1 -
T, ——Xi’n (1-v)
But we can have a simpler expression: U is uniformly distributed

on the interval, 0<U<1. Hence 1-U is also uniformly distributed on the same

interval. This implies that the distribution of T, does not change if we
replace 1-U by U.

Finally, we have shown that if U is uniformly distributed on

0<U<1, then T, = —%—ﬂn U is exponentially distributed, the parameter of the

distribution being A,

6-26

Using the random number generator provided by the CYBERNET system,
we determine the different interarrival times and thus the occurrence times.
The flowchart of the generation of the occurrence times of the faults in

one module is presented in Figure 6.5-2.

6.5.1.6 Determination of the Duration

As stated earlier, both exponential and uniform distributions of
transient fault duration are available in the simualtor. If the transient
duration is exponentially distributed (parameter v), we determine a duration

DT for each transient:

Dp = -~-—4nU using the same general procedure described

for the occurrence time. If the duration is uniformly distributed on 0<D{<D >

the duration DT is DT = Dmax x U.

6.5.1.7 Determination of the Occurrence Time of the Faults According
to a Burst Distribution Function

The occurrence time and duration of the bursts is determined as in
Sections 4.3.1.5 and 4.3.1.6. Then, for each burst, the occurrence time and
duration of the transients are determined.

6.5.2 Normal Operation (3 or More Units)

The detailed diagram (Figure 6.4-1) shows that either single fault
detection, or multiple fault detection may happen in this state. A multiple
fault is detected when all computers disagree at the same time (or indicate an
error condition}. Note that in gquintuplex for example, a fault which would hit
only 2 computers at the same time is not considered as a multiple fault. This
is due to the fact that 3 computers still agree and the good state of the system
js known. Multiple faults necessitate special care since the good computers are
not known. A system restart is to be entered. Single fault detection initiates
a rollahead. Figure 6.5-3 is a flowchart of State I.

6.5.3 Rollahead

A general flowchart of the rollahead state is presented in Figure
6.5-4. A rollahead does not correct all faults. Memory damage cannot be
recovered from through this procedure.

6-27

‘ Start '

Call random
number
generator

|

_Dete rmine
:nt_erarrwul
time T,

t—t + T,

L §

J

Record t as the
occurrence time

of the ith fault

pe—2t 4+ 1

{No

End

FIGURE 6.5-2 GENERATION OF THE OCCURRENCE OF THE FAULTS
IN ONE MODULE {POISSON DISTRIBUTION}

6-28

«<>

Yes

No
QR

Scan Fault
Tabie for
Next Fauit -

4

Compute
Detection Time
of this Fault

-

Determine
Next Fault
to be Detected

Go to
Rollahead
Recovery

State |l

Go to
System
Restart
State 111

FIGURE 6.5-3 NORMAL OPERATION STATE |

6-29

Compute its
detection time

Go to
Memory Copy

State VIl

Suppress

Corrected
Faults
Update Go to State |
Detecti 1 and decrease Go to
fection Time the number of ~ State |V

of the Others

computers by
one

!

Go to
State |

FIGURE 6.5-4 ROLLAHEAD STATE Il FLOWCHART

6-30

" The probability of success of rollahead is estimated by analyzing the
memory organization. The main conclusions are:

" }. With a DRO memory with protection bits, CPU and I/0 faults
do not cause memory damage. For these faults, the roliahead
is always successful.

2. For memory transients, the analysis is more difficult. A
first consideration is given to DRO and NDRC memories. Then,
consequences of faults in the different circuits should be
assessed. It must be determined which transients are likely
to cause an instruction or constant to be destroyed. Thus, we
can get an estimate of the success probability of rollahead.
According to this estimate, each fault is marked as recoverable
(or not) by rollahead. (It must not be forgotten that in any
case permanents cannot be recovered from by such a procedure).
The probability of success is much higher for an NDRQO than
for a DRO memory.

6.5.4 Other States

The subroutines describing the remaining states all have the same
basic structure. For all of them, the fault table is scanned and then a decision
is made as to which is the next state. Decisions are taken as described in the
exit conditions shown on the detailed state diagram.

6.5.5 Introduction of the Scheduling Mechanisms

In Section 4.1 one of the criteria for correct execution of a set of
programs is that the execution time of each program does not exceed a specified
1imit. Thus it is necessary to provide in the simulator a method for determina-
tion of the consequences of output delays and the number of missed iterations
due to execution of recovery procedures.

Scheduling mechanisms are described in Section 3.3. Section 3.5
describes how recovery procedures fit in the different schemes. We 1ist below
the fundamental remarks - as far as simulation js concerned - of Section 3.5.

1. Dichotomy of scheduling mechanisms into 2 classes:
synchronous type and asynchronous type mechanisms.

6-31

2. The rollback structure of minor cycle computations
corresponds with the scheduling of the computations
for any of the scheduling mechanisms.

3. In the case of a synchronous mechanism, each segment
of a major cycle computation is similar to the minor
cycle computations in that the rollback structure and
the scheduling of the segment correspond.

e L

With an asynchronous type, things are much more

I
»

complicated. If comparisons take place only when

an output occurs, the entire computations must be
repeated if an error occurs in a major cycle.
Furthermore, rollback may also be necessary for the
minor cycle computation taking place during this major
cycle.

The main point of the simulation is to evaluate the probability that
a mission is successfully completed. One instance of failure is when, because of
.recovery procedures, all computations necessary to the success of the mission
cannot be achieved. It can be assumed that for a specific type of mission
there is a maximum number of consecutively missed minor cycles. For example,
if the aircraft is unstable, this number may be no more than 1. For some other
type of mission, it may be a hundred. Thus, our first goal will be to count the
missed minor cycles, and record a failure whenever too many consecutive minor
cyctes are Tost. Note that because of the second remark, the simulation will
be very similar for both asynchronous and synchronous cases.

The main difference between these two cases is for major cycles. A
rollback, in an asynchronous system may considerably delay the completion of a
major cycie computation and may also cause more than one rollback.

We shall first look at the simpler case, i.e. synchronous scheduling.

6-32

6.5.5.1 Synchronous Scheduling

Minor Cycle Computations
Major Cycle Computations
Minor Cycle Initiation

v = = 3

Minor Cycle Period

After the minor cycle processing is completed, the femaining time
before the next RTI is used for major cycle processing.

6.5.5.2 Detection of Faults

Faults are detected when comparison takes place. A fault ‘in
the CPU 1is detected on the comparison following its occurrence. Things
are different for memory fault. If a fault hits a minor cycle program,
detection will occur in the current minor-cycle period. But if it hits a
major cycle program, detection occurs during the major cycle following its
occurrence. Thus, it is quite possible to have an undetected fault for a

while. In any case, having frequent comparison points will make detection

faster.
iy Some faults are detected earlier than the comparison following their
ﬂbccurrence. These are the faults detected by RETs. For example, a bad memory
word may cause a parity error. Let's examine the consequence of this feature.
If the recovery procedure is the rollahead, the error interrupt is left pending
since the state vector transfer can be initiated only at well-defined points.
It is at these points that comparisons take place. When the recovery procedure

is the rollback, the error interrupt can be immediately taken into account and
the rollback can be initiated.

6.5.5.3 Iteration Losses

Our goal is to determine if a recovery procedure has lasted too long.
A subroutine determines the number of consecutively missed iterations. The main

6-33

difficulty is that it is not enough to determine if recovery from a fault took
longer than a specified time. We must be aware that another recovery in the
same cycle might have decreased the time available for the second recovery.

6.5.5.4 Asynchronous Scheduling

As explained earlier and in Section 3.5.1, a fault occurring in a
major cycle may cause more than one rollback/rollahead. This happens when the
" major cycle routine where the fault occurs is interrupted by a minor cycle routine.
This is simulated in the following way. The interrupt rate and the average
length of a program segment are known. Thus it is possible to compute the
probability of having an interrupt coming between fault occurrence and the end of
the program segment, when the comparison and detection takes place. If an inter-
rupt has come in between, we assume that two recovery procedures take place.

The recovery procedure is assigned the highest interrupt priority.
If any other interrupt comes during the recovery, it is ignored, thus causing
a missed iteration.

6.5.6 EEM Faults

The External Electronics Module is the additional hardware in charge
of the voting and the recovery initiation. It is subject to faults and con-
sequence of faults in the EEM must be assessed. There are roughly two kinds of
organization: dedicated and non-dedicated EEMs.

6.5.6.1 Dedicated EEMs

An EEM is associated with each computer. A fault in the EEM causes
the computer associated with it to fail. Thus the failure rate of the EEM can
be added to the failure rate of each computer.

A fault in the EEM may also cause in some configurations the loss of
the corresponding bus. Analysis of the EEM design should yield the probability
that such a fault happens.

6.5.6.2 Non-Dedicated EEMs

In this case, EEMs are not directly associated with computers. The
computers vote on all EEMs or at any time, a primary EEM is chosen and switched
to all computers. In case of failure, another one is chosen. In both cases,
failure of an EEM does not cause a computer to fail. As long as one computer
and one EEM are still good, the system can continue to run.

6-34

Faults in an EEM do not cause a recovery procedure. These are masked
by voting. If there are only 2 EEMs, self-checking properties are used to deter-
mine which EEM has not failed. Thus the probability of fault detection in an
EEM must be estimated.

6.5.7 Input-Output Fauits

There are many possible I/0 configurations (see Section 2). In order
to provide the user with a reasonable number of different possibilities, we have
modeled the two principal types of I/0 configurations: these are the dedicated,
and non-dedicated bus configurations. It is expected that these will provide
useful approximations to systems employing variations of these approaches.

6.5.7.1 Dedicated Buses

This type of configuration is sketched on Figure 2.1-3. We Tist
below the assumptions made for modeling this configuration:

- When a computer fails, the bus and the sensors/actuators
associated with this computer cannot work any longer and
thus the simulator program considers them as if they had
failed.

- As long as two or more identical sensors have not failed,
the system is not endangered.

- When only one good sensor of a redundant set is left,
the system must be able to recognize the good sensor.
This is possible through use of reasonableness tests.
For each sensor, a coverage parameter must be estimated
By the designer. This coverage is the probability that
if all but one identical sensors are faulty, the system
is able to recognize the good one.

- Failure of a complete set of identical sensors is considered
as a system failure.

- Actuators are modeled in the same way as sensors. This is
a valid assumption if actuators can be partitioned, each part
being associated with one bus.

6-35

The condition of each of the devices in the system is represented
by a Boolean variable, with a one indicating a healthy device, and zero in-
dicating a failed device. The device-condition set is summarized as a
Boolean matrix, M{B,S), where B is the number of busses and S is the number of
sets of redundant devices. In the case of dedicated busses, when computer i
fails, all devices connected to computer i's bus have been forced into what
. is, in effect, a failed state since it is no longer possible to communicate
with them. For this case, M(i,j) is set to zero for all j.

| Figure 6.5-5 is a sketch of such an organization. A1l devices of
set 2 are similar. When device 3 of set 2 fails, the device-condition matrix
M becomes

1111
M= 11111
1011

If subsequent to this, computer 2 fails, then in effect bus 2 and all devices
connected to it are unusable, Thus M becomes

1111
M= 10000
1011

It appears that the good computers may have difficulties in deciding
which of the devices in set number 2 is still good. If there is no way of
deciding which is good, the coverage for the second set is input as O and a
system failure is the consequence of the failure of computer 2. If it is
always possible to decide which is good (totally self-checking device), then
there is no system failure in this case. Intermediate cases are possible.

The coverage is then a number between 0 and 1.

At the end of the simulated mission, each column of the matrix is
scanned. If a column has no "1", it is a system failure. If a column j has

only one "1", a random number 0<x<1 is generated and compared with the coverage
of the jth

condition.

device. If the random number is the bigger, it is a system failure

6-36

LE-9

—~4-

COMPUTER 1 1

] -

' 9--

COMPUTER | 1 *

2 et

e

COMPUTER

3

EXTERNAL EXTERNAL EXTERNAL
DEVICE DEVICE DEVICE
SET2 SET 3 SET 4

~ FIGURE 6.5-5 EXAMPLE OF DEDICATED BUS CONFIGURATION

BUS 1

BUS 2
’

BUS 3

EXTERNAL
DEVICE
SET
1

6.5.7.2 Non-Dedicated Buses

The modeling is the same as in the previous case except that the
failure of one computer does not cause a bus to fail. Thus, it would seem that
this system is always more reliable than a dedicated bus configuration. How-
ever this is not true since the reliability of the voter/switch must be taken
into account. It may be the EEMs which perform this voting function.

Whether the busses are dedicated or not, external device set 1
is by definition the bus: if a bus fails, all devices connected to this

bus fail,
6.6 TESTING

6.6.1 Fault Generator

This is the easiest part to test. Given a definite distribution its
mean and variance can be computed. They can also be computed from a sample ob-
tained from the fault generator. Comparison of the two sets of results and
taking into account the size of the sample permit to validate (or not) the
generator,

6.6.2 Simulator

VYalidation of the simulator is a more difficult task and as a matter
of fact, could only be completed when comparisons with experimental results could
be achieved. Obviously, this is not possible and some alternate route has to
be found.

First of all we test that the simulator does what we can expect of
it in many different cases where the faults are known. For these tests, the
faults are generated by hand so that the different paths of the program are
exercised.

After being sure that the program does what the programmer expects,
the results have still to be tested. The general case cannot be tested. How-
ever, by simulating simple configurations where some parameters are chosen
such that they do not affect the outputs, results are obtained which can be
compared with results of the modeling.

6-38

6.7 SAMPLE RUN

The output of the simulator for the simulation of a software TMR

configuration without memory copy is presented in Figure 6.7-1.

below refer to some of the parameters.

1.

In this run, we have not studied sensor reliability.
However, the program requires at least that 2 “sensors"
be indicated. By definition "sensor" 1 is always the
bus. In this case, sensor 2 never fails and thus does
not influence the simulation.

Here we have chosen a very short fault duration (lus).
Thus, it is not useful to wait for the dissipation of the
fault when initiating a recovery procedure, since faults
are detected only at the comparison every 5 milliseconds.

These parameters are irrelevant in this case since there
is no memory copy.

The restart duration is chosen longer than the maximum
down time (30 ms}. Since computation is stopped during
a system restart, a restart implies here a failure
condition.

Here we mean the proportion of memory which is affected

by minor cycle programs. When mémory damage has occurred,
detection will be 100 times siower if the fault hit a
major cycle program than if it hit a minor cycle. In this
case faults are four times more 1ikely to hit a major than
a minor cycle program. The choice of .2 is arbitrary for
this case. It is not a critical parameter since even if

3 seconds elapses before detection of the fault, the
probability of having another fault in the mean time

is very low.

Coverage means here the probability that the system
recovers from a transient without discarding a computer.

From the size of the sample, we can conclude that

6-39

The remarks

° Multiplex coverage 754 (+ 1%)

° Duplex coverage = 73% (+ 3%)

° Diagnostability = 89% (+ 2%)

° Failure Prob- =149 = 30107+ .4%10)7
ability After 50000

100 Hours

The numher of transients occurring in simplex is the difference
between the total number of transients and those occurring in multiplex
and duplex (recovered or not). In this case, this different yields
10175 -(6994+2319+615+223) = 34. Thus the value for the simplex coverage
is not very significant since the size of the sample (34) is too small.

6-40

L¥-9

TRIPLEX

RECOVERY PROCEDURE WITH MORE TWAN 2 COMPUTERS! ROLLAMEAD ONLY
RECOVERY PROCEDURE IN DUPLEXI ROLLBACK

ODEDICATED EEMS '

DEDICATED 1/0 RUSSES
NOTATIONS!

MODULE 11 CPU

MODULE 2! EEM(EXTERNAL LOGIC)

MODULE 3t MEMORY

MODULE 4% RUS AND EXTERNAL DEVICES

SENSOR 1 IS THE BUSI FAILURES OF TWE BUS CAUSES FAILURE OF AL OEVICES ON THE BuUs

DESCRIPTION OF THE STIMULATION ¢
NUMBER OF MISSIONS %0000
MISSION TIME 100,000 HOURS

DESCRIPTION OF EXTERNAL DEVICES
NUMBER OF ACTUATORS/SENSORS
PER BUS 2 :
SENSOR 1 DUPLEX COVERAGE! 1,000 RELATIVE FAILURE RATE! 1,000
SENSOR 2 DUPLEX COVERAGE: 1.000 RELATIVE FAILURE RATE! 0,000 See remark)
IMPACT OF EEM FAULTS ON COMPUTER +100E+01)
IMPACT OF EEM: FAULTS ON BUS Oe
IMPACT OF EEM- FAULTS ON BOTH 0

FIGURE 6.7-1 SOFTWARE TMR WITHOUT MEMORY COPY

v-9

DESCRIPTION OF fHE RECOVERY CHARACTF
DELAY KEFORE QECOVEHRY
QOLLAHNEAD NURATION

MEMOKRY=COPY O IRATTON 2nn
RECURRENCE INTHRVALS

ROLLARESD

MEMORY=CNPY
RESTART DURPATION 1nn

MEMORYCOPY EFFTCACY

PROGRAM SURVIVABILITY

MAXTMUM NOMEBEQ 0OF ROLLBACKS
MEAN DIAGNOSIS TIWE

DETECTION PROBABILITY IN {PU
AETECTION PRNOJARILITY IN MEMORY
STP EFFICIFNCY

ISOLATION DURATION

NUMRER OF SPARES

DESCRIPTION OF THE SOFTWARE #
ITERATION PERIOD
MINOR CYCLE DURATION
MAJNR CYCLF DURATIUN,
TIME BETWEEN COMPARISONS
MAXTMUM DNWN TIME.
SIZE OF MINOR CYCLE PHROGRAM

DESCRIPTION DOF THE FAULT ENVIRONMENT
WODULE 1 3 PERMANENT RATE
TRANSIENT RATE
TRANSIENT NURATTION
MODULE 2 § PERMAMENT RATE
TRANSIENT RATE
TRANSIENT NURATTON
MODULE 3 1 PEQMANENT RATE
TRANSTENT RATE
TRANSTIENT OURATION
MODULE & 1 PERMANENT RATE
TRANSIENT RATE
TRANSIENT DURATION

FIGURE 6.7-1 SOFTWARE

RTSTICS

0,000 MILLISECONUS
2100 MILLTSECONDS

0,000 MMILLISECONDS

3000, MILLISECONDS
3000, ATLLISECONDS
0,000 »ILLISFCONDS
. 99409
e 300
1

19,000 MILLTSECONDS

« 050
450
«9RD
0,000
0

30,000 MILLISECONDS
5,000 MILLTSECONDS
100 [TERATTONS
5,000 MILLISECONDS
30,000 MILLISECONDS

«200

«45E=03 PER HOUR
W4BF=03 PER HOUR
L10F=02 MILLISECONNS (EXPONENTIAL)D

0y PER HOUR
0. PER HOUR
O MILLISECHONNS (EXPONENTIAL)

«25F=03 PER HOUR
«?5E=03 PER HOUR ‘
J0F=02 MILLISECONDS (EXPONENTIAL)
2« #0F =05 PEFR HOUR

0. PER HOUR

) MILLISECONDS (EXPONENTIAL}

TMR WITHOUT MEMORY COPY (Cont'd)

£v-9

NUMBER
NUMBER
NUMBER
NUMBER
NUMBER
NUMBER
NUMBER
NUMBER
NUMBER
NUMBER
NUMBER
NUMBER

oF
0OF
OF
OF
0F
OF
OF
OF
0F
OF
0F
OF

FAULTS
TRANSIENTS
USED SPaRES
QUADRUPLEX
TRIPLEX
DUPLEX
SIMPLEX
ROLLAHEADS
MEMORY=COPIES
SYSTEM=RESTARTS
ROLLBACKS
FAILURES

RESULTS

20402
10175
t

0

0
11613
922
18607
0

0
1647
149

NDe OF TRANSIENTS RECOVERED FROM IN MULTIPLEX 6994
NO« OF TRANSIENTS NOT RECOVERED FROM IN MULTIPLEX 2319
NOs OF TRANSIENTS RECOVERED FROM IN DUPLEX 615
. NOe OF TRANSIENTS NOT RECOVERED FROM IN DUPLEX 223
CAUSES OF FAILURES:T OUPLE

EEM F
1/0 F

X FAILURES 110
ATLURES 0
ATLURES 1

EXCESSIVE DOWNTTIME 0
SIMPLEX FAILURES 38
PROPORTION OF MISSED ITERATIONS ,6303E=08

LONGEST SERIES OF MISSED

(BELOWe A COVERAGE MAS A
MULTIPLEX COVERAGE:
DUSLEX COVERAGE!

SIMPLEX COVERAGES
CAYASTROPHIC FAULTSS 0
DIAGNOSTIBILITY!

FIGURE 6.7-1

ITERATIONS 2

VALJUE OF =1 IF IT wWAS NDOT POSSIBLE TO COMPUTE IT,I1,E,

«TS1E4¢nD WHEN NO TRANSTIENTS O R IN ;
tI3eEan 1E: CCUR 1 ONE: OF

-833£-01

«B93E+00

SOFTWARE TMR WITHOUT MEMORY COPY (Cont'd)

THE TWO MODES)

THIS PAGE INTENTIONALLY LEFT BLANK

6-44

7.0 PARAMETERS

Before either the analytic model or the simulator can be used for
the study of redundant computer configurations, values for their input para-
meters must be determined. The simulator-input values are obtained
by means of an analysis of the computer and configuration under study. The
simulator can then be used to obtain estimates of the parameters required by
the analytic model.

7.1 SIMULATOR

“The simulator can be used to estimate the parameters required by
the mathematical model. It reguires about forty inputé that are a function
of the system configuration, the application, the fault environment and the
computer's reliability and speed. Here we will consider the STP efficiency,
the program integrity and the BITE efficiency. The other parameters are
discussed in Section 6.3.

7.1.1 STP _Efficiency

The Self-Test Program efficiency is the probability that the STP
returns a correct fault indication, once a permanent (or leaky transient)
fault has been detected. = This is a fundamental parameter for (residual)
duplex systems since it gives the probability of choosing the'good‘computer
for adaptation to simplex, once a fault has been detected through comparison
and not corrected by the rollback. The STP efficiency comprises not only the
proportion of faults detected with the diagnostic routine, but also the pro-
portion of faults detected through BITE features. Because of this, some
faults will be detected immediately, and others will be detected several milli-
seconds after the diagnostic program is initiated. If the resulting time loss
is critical, the mission could fail. Thus we associate with the STP efficiency
its maximum execution time -- i.e. the time it takes to execute the entire
diagnostic program.

7.1.1.1 STP Requirements

For it to be effective, the STP in conjunction with BITE should
verify proper operation of the following modules.

7-1

1. Memory - program memory tested by sum check if main
store parity not available. Data areas tested by
write/read verification with test data. ‘

2. CPU - ATl instructions should be executed in a
predescribed sequence with required variations and
exhaustive data patterns to insure that all instruc-
tions are operating properly. Al1 addressing schemes
and registers should also be tested.

3. 1/0 Test - The I1/0 should be tested using I/0 wrap
checks to insure all I/0 functions are operating
properly,

BITE should include features such as time-out counters, I/0 parity, power
monitoring circuits and storage protection.

7.1.1.2 Efficiency Estimation

The STP efficiency analysis procedure consists of several steps:
1) partition the computer into several independent modules as described above,
and obtain relijability data and circuit documentation for the components of
each module, 2) determine which sections have no effect on computer operation
(such as unused I1/0 channels, the AGE interface or elapsed time counter),
3) determine the failure modes (such as nand gate stuck on 1) for each circuit,
and its detectability based on the STP program and BITE, 4) the STP efficiency
can then be determined as follows:

Let lij = pccurrence rate of jth failure mode of ith circuit
Sij = detectability of jth failture mode of ith circuit
n: = quantity of ith component

j

Then the STP program efficiency is given by:

LN T By Ay Total detectable
STP efficiency = 2 J failure rate
%3 " 31 M3 Total failure

rate

7-2

The maximum diagnosis time can be obtained from a sizing and
timing analysis of the STP program.

7.1.1.3 Typical Computers

Most computer manufacturers supply an STP program with an efficiency
of 95% (manufacturer supplied estimate) and diagnosis time of 10-30 milliseconds.

7.1.2 Program Integrity

The Program Integrity (PI) is the probability that a transieﬁt in the
memory will not result in any modification to the program. The rollahead/rollback
procedures correct any transient that doesn't destroy the program or last too
long. The program survivability parameter is used by the simulator in conjunc-
tion with the transient duration to estimate the rollahead/rollback success
probabilities, which in turn are used indirectly to estimate the transient
leakage.

7.1.2.1 CPU Fau]ts

If the memory is not protected, then there is a small chance that a
CPU transient will result in a program modification, for it could cause indexing .
errors resuiting in incorrect address computations. Thus portions of critical
program segments (such as the landing module) not currently being executed could
be destroyed resulting in a lurking fault. This could cause a system failure
at a later time in the mission.

However, many contemporary aerospace comptuters have storage pro-
tection capability. This facility prevents the CPU from modifying the contents
of any protected storage locations.* Thus the chance that a CPU fault will
result in program modification is virtually zero, and the program survivability
to a CPU transient is essentially 100%.

The simulator currently assumes the existence of storage protection
in the candidate computer,

7.1.2.2 Memory

The program integrity for a particular computer memory is
dependent on its type and organization. A read-only memory offers the best
protection, as it provides a PI of 100%. The NDRO plated wire memory is not

*
Except under special conditions defined by the computer manufacturer.
7-3

quite as good, but has a much better PI than a DRO core memory. The DRO

core memory is particularly bad since incorrect data obtained because of

a fault occurring during a read cycle is written back into memory during the
restore cycle resulting in non-intentional modification to the memory {program).
Trade off data for DRO and NDRO memories is discussed in Section 9.

7.1.2.3 PI Fstimation

The .program integrity is defined by

He>

Pr {The program memory contents is not modified, given
that a transient failure has occurred in memory}

P1

The program integrity can be estimated using a top-down procedure consisting
of the following steps: (1} partition the memory into its functional compo-
nents; (2) estimate the relative transient failure rate (%i/¢) for each
component; (3) estimate the probability (Pli) that when a transient occurs
in the TP memory component, no program word will be damaged; and (4) calculate

the program integrity using this formula

PT =2 [(PI)(Fi/)] {Equation 1)
1

where

e

PIi Pr {Program memory js not modified when a transient
occurs in the ith component in memory}

T 8 Transient failure rate for the ith memory component

T =2 ¥ A Memory transient failure rate
.i

The above formula is derived using the total law of probability which
states (PARZ 60)

if {Ai} is a set of mutually exclusive events

and B C.E Ai = Bc:[A1UA2U...UAn]

then Pr[B] =2_ Pr [B|A.] Pr [A.]
1

From the above theorem, it follows that if {Ai} is a set of mutually

exclusive events and (BNC) C U Ai
1

~then Pr [B|C] =2 Pr [B](crA,)] PrlA;]|C] (Equation 2)
i
If we let
B = event that a program word is modified
C = event that a transient fault occurs in memory
and A1 = event that a transient fault occurs in the ith memory

component we have

PI = Pr [B]|C] = Pr {Program memory is not modified given that a
transient has occurred in memory}

PI, = Pr [B|(CﬂAi)] = Pr {Program memory is not modified given

that a transient has occurred in
the ith component?

i/t = Pr [AiIC] = Pr {Transient occurs in the ith component
given that a transient has occurred in
memory }*-

Equation 1 can be obtained from equation 2, by substitution, as is shown

below:

Pr [B]c] =2 Pr [B](cnA;)] Pr [A]C]
e ——r ! e e
P =2 L(pr) x (Mi/r)]

1

The program integrity can be determined systematically to whatever

level of detail is required. This is, because the PI determination procedure
is recursive, that is, the 1th element can be partitioned into its components
or failure modes and an analogous procedure used for determining PIi from the

PI1.j 5.

-*
To obtain this resu]t, we assumed that the transient inter-arrival times for
the memory and its components are exponentially-distributed random variables

with means of 1/1 and 1/11, respectively.
7-5

PI, =3 (PL) (id/xy)

: 1]
J
where PIi‘ = Pr {Memory word damaged given that a transient has
J occurred in the jth subcomponent of the ith component}
1;; = Transient failure rate of the jth subcomponent of the
i ith component.

The PIij can be determined by further partitioning, or by using
engineering judgment to estimate the effect of the transient., In the latter
case, we taken into account any masking effects. For example, only a small
portion of the memory is used during a read/restore cycle, so transients
occurring in certain components (such as address drivers) will only cause
damage to a program word when the component is used during the duration of
the transient. In this case, PI1.j is one minus the probability that the faulty
component will be used during the transient duration and jts use will result
in damage to a program word.

7.1.3 BITE Efficiency

The BITE efficiency is the probability that the built-in-test
equipment will detect the occurrence of a transient or permanent fault without
the aid of a diagnostic program. This parameter is used by the simulator to
determine the effect of rollback in simplex, and uncovered transients in duplex.
It has only a negligible effect on configurations of 3 or more operating compu-
ters. This parameter is needed separately for both the CPU and the menory.

7.1.3.1 CPU BITE Efficiency

The CPU BITE efficiency is about 5% for most typical aerospace
computers {excluding the power supply). In order to obtain a more accurate
figure, a detailed analysis of the organization and data flow of the CPU is

necessary. This parameter only has a third order effect on RCS survivability,
thus a detailed estimate is unnecessary.

7.1.3.2 Memory BITE Efficiency

The memory BITE efficiency can be estimated by a procedure similar
to the STP estimation proceduref Briefly, the following steps are necessary:

1. Partition the memory into components and obtain the
failure rate (Ai) and quantity (ni) of each,

7-6

2. Determine the important failure modes of each
component and its probability of occurrence (

Aij).

3. Determine which failure modes can give a BITE
indication (such as parity). Let Bij =1 if the j
failure mode of the ith component gives a BITE indication
and 0 if it doesn't.

th

4. The memory BITE efficiency is then given by the following

formula:
o 1zn1§:f3w ;\ij'
Efficiency =
2 q, g
;01
7.2 ANALYTIC MODEL

An iterative relationship developed from the mathematical model
is used to evaluate reconfigurable computer systems employing transient recovery.

It requires values for the following parameters:
1. The effective computer failure rate.
2. The recoverability for 2, 3 and more operating computers.

3. The transient leakage for 1, 2, 3 and more operating
computers.

7.2.1 Computer Effective Failure Rate

The computer effective permanent failure rate is the value of x used
in the analytic model for system evaluation purposes. This failure rate may
be different from that solely attributable to the computer. This comes about
because some HASW systems involve the use of computer-dedicated EEMs such that
an EEM failure prevents the proper operation of its associated computer.

Obtaining the computer effective permanent failure rate is accomplished
using these steps. First, an estimate is obtained of the computer failure rate.
This may be obtained from the manufacturer or may be estimated independently by
the evaluator. Second, a rough design of the EEM is prepared.* Next, the EEM

¥ :
Assuming an actual design is not available.

7-7

failure rate is estimated.. Then, the EEM deSign is analyzed and the portions
jdentified that, when failed, impair the computer's operation. The failure .
rates of these portions are then added to the failure rate of the computer to
yield the effective failure rate. If, as is the case for some configurations,
other EEM failure impair bus operation, these failures are added to obtain a
bus effective failure rate.

7.2:2 . Recoverability

This parameter is a measure of a redundant (N) computer system's
ability to recover to a less redundant (N-1) computer system from permanent
or leaky transient faults. The recoverability for 3 or more operating computers
is very close to 1.0 for a well designed system since a faulty computer is
immediately updated during the comparison. For a (residual) duplex system, a
self test program must be invoked to isolate the faulty computer, so the re-
coverability for duplex is dependent upon the STP efficiency.

The duplex recoverability is obtained as one of the outputs from the
simulator, which determines it by forming the ratio of the number of residual
simplex systems to the number of permanents and leaky transients in duplex.

7.2.3 Transient Leakage

The transient leakage represents the probability that a computer
will not completely recover from a transient, i.e. the system will mistake the
transient for a permanent fault and adapt from N to N-1 operating computers.
The simulator estimates the transient leakage for 1, 2 and 3 operating compu-
ters by determining the ratio of uncovered to covered transients in each case.
The transient leakage is dependent on the memory type, the transient duration,
and the transient recovery algorithms used.

7-8

8.0 COMPLEMENTARY AMALYTIC-SIMULATIVE TECHNIQUE
8.1 OVERALL STRUCTURE

The analytic modeling approach described in Section 5 and the
simulation technique described in Section 6 each has its strengths and limi-
tations. However when these two system evaluation approaches are combined,
and supplemented by some engineering analysis, a very powerful technique re-
sults. The combination is illustrated in Figure 8.1-1,

This Complementary Analytic-Simulative Technique (CAST) evolved as
it became evident that neither analysis nor simulation alone could satisfy
all the RCS evaluation requirements. Analytic modeling provides flexibility
and rapid, economical data-generation. However.the solutions for some configu-
rations are very cumbersome and in certain cases the mathematical model formu-
lated is intractable. Simulation permits computer system details to be included
easily, but data generation is slow and expensive. CAST permits the user to
obtain the best features of both analytic modeling and simulation.

8.2 RCS ENGINEERING ANALYSIS

The RCS engineering analysis is performed to provide six categories
of information to the analytic modeling and the simulation. These information

categories are:

1. Configuration Particulars
Fault Environment
System Failure Criteria
Software Structure

Recovery Features

(=N & 2 B LT I~ |

Test Features

The conf1gurat1on particulars are: the computer system type, e.q.
adapt1ve or non-adaptive, etc.; the maximum number of machines; and the external
hardware utilized.

The items pro&ided under the fault-environment category are: the
permanent-fault occurrence rate; the transient-fault occurrence rate; transient
duration; and occurrence rate for bursts of faults.

8-1

RCS
ANALYTIC | FAULT-
[ENGINEERING| MODELING |TOLERANC

ANALYSIS IMEASURES

B —

v

SIMULATION /

FIGURE 8.1-1 FAULT-TOLERANCE MEASURES CAN BE PRODUCED THROUGH
A COMBINATION OF ENGINEERING ANALYSIS, SIMULATION,
AND ANALYTIC MODELING

§-2

There are three system failure criteria that may be applied. These
are: missed iterations; output not delivered in time; and/or a critical
computation missed.

The software structure information that is provided as a result
of the RCS engineering analysis includes the type of scheduling mechanism
- employed in the executive, e.g. synchronous or asynchronous; and the general
sequence of the applications program segments.

Recovery features deal principally with the specification'of which
recovery algorithms should be used and in what sequence. The six basic possi-
bilities are: rollahead; memory copy; rollback; system restart; system
adaptation; and spare introduction.

The final category of information produced by the RCS engineering
analysis is that of test features. This category includes information about:
self-test programs (e.g. effectiveness and maximum diagnosis time); the use of
error detecting, error-correcting codes; the use and effectiveness of built-in
test equipment; output results comparison; voting of output results; and
finally reasonableness tests.

8.3 SIMULATION

The results produced by the simulator developed have been described

in detail in Section 6.3. The reader is merely reminded here that the following

items are available as simulator outputs:
1. Permanent-fault coverage
2. Transient-fault coverage
3. Detectability
4, Diagnostability
5. Recoverability

8.4 ANALYTIC MODELING

The analytic modeling provides the following measures of fault-
tolerance:

1. Computer system survivability (or failure probability)

2. Computer system reliability

8-3

Figure 8.4-1 is a summary diagram of CAST showing what is produced
by each of the three aspects of the technique.

8-4

CONFIGURATION PARTICULARS

* COMPUTER S5YSTEM TYPE

* MAXIMUM COMPLEXITY

* MODULARIZATION
*EXTERNAL HARDWARE

FAULT ENVIRONMENT

* PERMANENT OCCURRENCE
¢ TRANSIENT OCCURRENCE
* TRANSIENT DURATION

RCS
ENGINEERING
ANALYSIS
SYSTEM FAILURE
CRITERIA
SYSTEMS'
* MISSED ITERATIONS }-"
e TIME LOST ——| FAILURE
CRITERIA
|_+SOF TWARE
/ STRUCTURE
SOF TWARE STRUCTURE| RECOVERY
» SYNCHRONOUS FEATURES
o ASYNCHRONOUS
EXECUTIVE TEST
FEATURES

TEST FEATURES

® SELF- TEST PROGRAMS

+« ERROR DETECTION/
CORRECTION CODES

¢ HARDWARE BUILT-INTEST

s COMPARISON OF RESULTS

* VOTING

¢ REASONABLENESS TESTS

FIGURE 8.4-1

ENVIRONMENT

~

FAULT

l

CONFIGURA TION

PARTICULARS

*:\\\\’///;’

FAULT-TOLERANCE MEASURES

* SURVIVABILITY
s RELIABILITY

ANALYTIC
MODELING

FAULT-
TOLERANCE
MEASURES

7 T~

SIMULATION

|/

MOPELING.
PARAMETERS

RECOVERY FEATURES

*ROLLAHEAD
sROLLBACK

* MEMORY COPY
sRESTART

MODELING PARAMETERS

* PERMANENT COVERAGE
= TRANSIENT LEAKAGE

s DETECTABILITY

¢ DIAGNOSTABILITY

* RECOVERABILITY

CAST SUMMARY DIAGRAM

8-5

THIS PAGE INTENTIONALLY LEFT BLANK

8-6

9.0 CONFIGURATION ANALYSES AND TRADE-OFF STUDIES

9.1 GENERAL

The analyses and trade-off studies described below are presented
to show the merits of the various reconfigurable computer system ofganization
concepts and the effects of using the various reliability enhancement tech-
niques. Before presenting these analyses and trade-offs it is appropriate
to discuss the ground rules governing these studies.

The general application class for the RCS studied is that of a
machine that provides at least the capability sufficient to handle an all-
digital, fly-by-wire control system for a passenger-carrying airplane. The
decision was made to consider a machine that has a memory capacity of 16K,
32-bit words.* The general class of aerospace computers appropriate for this
application all supply at least that capability in one ATR enclosure. It is
also possible to satisfy the requirements of the four function classes of
attitude and flight-path control, area nagivation, communications, and air-
traffic control (with the exception of display)} defined in RATN 73, in just
over 12K words, thus leaving 4K for the executive. Hence, we are not faced
with the problem of excessive memory requirements.

The configurations presented are not oriented toward particular
individual aerospace computers, but rather toward classes of machines. Thus
the results should not be construed as favoring a particular design.

. One difficulty encountered in evaluating a computer configuration is
the treatment of sensor and/or actuator failures. This difficulty arises be-
cause of the diversity of devices, the particular devices employed, the total
number of devices, and the individual device redundancies. Because of these
complexities, it was decided to include a seminal capability in CAST {(princi-
pally in the simulator portion) to model 1/0 devices, and to set I/0 device
failure rates to zero for these studies.

* Appendix B contains descriptions of four representative machines.

9-1

PARAMETERS USED FOR EVALUATION

Evaluation studies have been made for three classes of configurations:
a mostly-software configuration, a hardware-aided-software configuration and
a mostly-hardware configuration. The first set of configuraticns uses a 16K
memory and a computer with developed I/0 capabitities. The second and third
ones use only a 16K memory, but the computer has less I/0 capabilities.

When studying the influence of some parameters, we specify the con-
figuration and the varying parameters. Non-varying parameters are those indi-
cated in the table corresponding to the configuration.

Table 9.2-1 is for mostly-software configurations. Table 9.2-1I is
for hardware-aided-software configurations.

9.2.1 Mostly-Software Configurations (Table 9.2-1)

9.2.1.1 Physical Parameters

9.2.1.1.1 Pesign Decisions

The number of computers will always be specified. A software con-
figuration has no EEM. Each bus is supposed to be dedicated to a computer,
except otherwise specified.

Sensor redundancy is studied in Section 9.3.5.4. Otherwise, we
always separate them from our study.

9.2.1.1.2 Failure Characteristics

The failure rate (per million hours) comes from our evaluation of
a typical computer with high I/0 capabilities*. The intercommunications module
failure rate is incTuded into the CPU failure rate. This is due to the fact
that the results of such faults are bad outputs, as for CPU faults. The bus
has a typical failure rate of 6 per million hours.

Transient rates are supposed equal to permanent rates and the
transient duration is set to 1 us. There is little data confirming these
assumptions. Section 9.3.6 shows a great sensitivity of the failure probabil-
ity to the transient rate and duration. This demonstrates the important need
of a better knowledge of the transient environment.

* A detailed failure-rate determination for one of the four representative
machines is presented in Appendix C. :

9-2

n

€6

2}

PTSI1CAL PARAMETERS
&) Cesign Decisions

TABLE 9.2+

3} PARAMETERS AFFECTING FAULT DETECTION AND [SOUATION iN THE COMPUTERS

4) Detection EFficiency

- IR EE
» r af Compalers Sumber of Computers 1 or more
TedTcated won Gedicated ENs B ComparisonsU | 100% 1oox | 0%
Muater of £0My - TPY RITE 5% 5T 51
Gedicated/hom Ordicated Butes [] -
-1 S '
wmber of fLses = Semary BITE 5 i L1
Jnmier of Externsl Devices Per Bus L)
Naber of Spare CoRpulers @ b) tsolation Efficiencyt?)
| Wumbar of Computers | 3 or more | 2
b) Failure Charactivistics ctsanstT? 10010101 a1
RC PO NN PR ¢ SITE st 51
T Mewory BITE 455 45%
oy i a0 |) ase | s a7
i J Hagnosis 9ax 58y
Aoy (1) Tzo0 [w7 2007 s 157}
Tt] - [W T .
Bus and Enteenal 15} 4] PARRMETERS AFFECTING FAIRT DETECTION AND FSOLATIOR IN THE EXTERMAL HARDWARE
Tevices () 1B wt] e] -)
(3212}
Impact of £EM Fallure on Bus -
Mamber of Faylts {n the Bus 1 MWumber of ETMs 3 ur more ? 1
v Detection Efficiency | 100500 | JoesU0! et 1)
Wamser of Faults Tn Tach Tsolatian Efficiency | 10051107 - wa, U
External Device 5
v b] Bus and External Devices
- By i
SOFTWARE CHARMIERTSTICS omber of Buses 3 gr vore 2 1
Detection Efficiency | 1005000 | 3000100 L
Synchroncus/Arynchronoys 5 1£14] L]
Scheculing Mechandsn Inatatien Efficiency | 1G0T [N-A.
1eration Pertad 0
- For Each Externsl Device
Hings Cycle urstion S m
Wumber of Redundant Devicws 3 or more 2 1}
major Lycle Duration - 76T TToT IOy
130 terus of {terations} Datactian Efficiency 100% 100%' o
Tine Between Corparisams 5w Isolation Efficiancy o'W - na 4
Maximem Down Tims 0w
Relative Size of Hinor 7
Lyl Program -
Interrypt Rate -

LIST OF INPUT PARAMETERS FOR MOSTLY SOF TWARE CONFIGURA TIONS

TRANSIENT FAULT RECOVERY PARAMETERS
Efficiency for | Efffciency for Maxinun Rmber
CPU Fautt Memory Fault Duration of Trials Time Limit In Use
Rallahead 10) A ms L] 3000w \’es(m]
1007 a0 - T
Roliback 5us 1 liﬁn ¥ '¢’!101
[LLl] cT 4LY]
Mamory Copy LA 9% 2000 m L 3000 w1 Tes
System Rastare | 300e010) 1008019 1000 ms AL mite)
ration vos

PERHANENT FAT RECOVERY PARAMETERS

Aiways done by switching off or ignoring the fiulty computer,

once the permanefil hus been recognized,
it 1y switched i,

If a spare 12 avallable,

Mumber of Computers 3 or oore 2 1
Efficiency 1001V 107 o [Tk
{197 111})

Duratfen ? Oeec 3 ms RA
FOOTROTES
1) Impticit parameter whin eath EEM/ws 1y dedicated to {8) This parameter i3 valld only For pevwanent favits., Dfagnoais i3

one computer. bo heln with transient faults. . '
(2) The 3us by 1tse1f 13 comsidered as sn externa] device. {9} [solatfon afficlency 15 1005, once the fault has been detected In simplex,
{3) 1z permanemt Taylt rate: i : dorwant fault rats, (10} Implicit paramaters.

Ti transient fault rate: Vys pean transtent duration. {11) These parzmeters are mot app!icable with dedicated SEDN: In this case, faults
(4} Man applicable when there 1s ma spare. in the LEM are comsidered a3 equivaient to CPU faults.
(5F [n this example, 5t 3 assumed Bhat Lhe four exterssl [32) These paraswtars sre 0 with 4 software THR sfnce thera 13 o EBN,

devices have the same fault rate. (33) Rollabsad fs used far 3 or more computers. :
(8} Nom applicible when synchronous scheduling. Rollbeck 13 used for 2 or | computers.
m m:.iw..:l"' l;:dhv:h:u. Howsver, the 100% [1%} won applicable.

ciency 5 reae onty after the whole
Ras been exercisad, 1.6, bfter 8 full mojor cyere. (15} Rollahesd 13 preceded by an inposed delsy to aliow the transfent to 4tssipate.
Thus B1TE feature mey speed up dutection. (16} Irrelevant when EEN are dmdicaed.

9.2.1.2 Software Characteristics

Except in Section 9.3.7, these parameters are constand and valid
for all configurations.

We have a synchronous scheduling mechanism. The sample period is
typical of a fly-by-wire and is 30 ms Tong. The minor cycle duration which
represents the duration of the computation repeated every period is 5 milli-
seconds Tong. A major cycle is a hundred periods long, i.e., 3 seconds long.
Comparisons take place every 5 ms. We suppose that the maximum down time is
30 milliseconds long. This means that two consecutive iteration misses cause
a system failure.

9.2.1.3 Parameters Affecting Fault Tolerance in the Computers

Ways of evaluating these parameters are explained in Section 7.
Diagnosis efficiency is given by the manufacturer. The values listed here
are typical of a computer with high I/0 capabilities.

9.2.1.4 Parameters Affecting Fault Tolerance in the External Hardware

As stated in 9.2.7.1.1., there are no EEM and no external devices in
this configuration.

We suppose that the system needs two busses to perform satisfactorily.

This corresponds to an isolation efficiency of 0% when only two busses are
left.

9.2.1.5 Transient Fault Recovery Parameters

We suppose that 70% of a DRO memory transient fault affects the
content of a memory word, thus impairing rollahead and rollback efficiency.
A rollahead lasts .1 ms and a rollback 5 ms (time between comparison).

The memory copy has an efficacy of .9999. This corresponds to the
very low probability that the little routine bootstrapping the memory copy
recovery be itself destroyed. A memory copy lasts 2 seconds which roughly
corresponds to copying one word every 100 microseconds.

We alliow for only 1 roliback. This means that if the rollback is
unsuccessful, adaptation to simplex is attempted. This is reasonable since
we supposed a transient duration of 1 microsecond.

9-4

‘ The recurrence intervals are 3 seconds Tong, or one major cycle.
We suppose that during one major cycle the whole program memory is exercised.
Thus, it is unlikely to mistake a permanent for a transient. This would
happen if the permanent was redetected after more than 3 seconds, fo]]owing
an unsuccessful recovery attempt.

9.2.1.6 Permanent Fault Recovery Parameters

The manufacturer gives the efficiency and duration of the diagnostic
routine.

§.2.1.7 Modeling Parameters

Simulation of the mostly-software configurations results in the
following modeling parameter values:

Parameter Yalue
21 0.87
Lo 0.?1
Ryshgsis 10
Vs 0.94
W, 0.8
w3,w4,w5 1

A total of more than ten million missions were simulated during the simula-
tion runs performed on this contract. When the state of the configuration
consisted of three or more working computers there were no faults that
directly resulted in system failure.

9.2.2 HardWare-Aided-Software Configurations {Table 9.2-11)

Most of the considerations of Section 9.2.1 are still valid except
that now we consider a computer with minimum I/0 capabilities.

9.2.2.1 Physical Parameters

9.2.2.1.1 Design Decisijons

The EEM's and the busses in a HASW system may or may not be
dedicated.

9.2.2.1.2 Failure Characteristics

The computer has a lower failure rate than for a mostly-software
configuration. The failure rate of the EEMs partially makes the difference.
The complexity of an EEM should be less than the complexity of the inter-
communication module of the computer used in Section 9.2.1.

We suppose that in 60% of the cases, the loss of the EEM will cause
the loss of the bus since the EEM outputs wrong data.

9.2.2.2 Software Characteristics

See Section 9.2.1.2.

9.2.2.3 Parameters Affecting Fault Tolerance in the Computers

The main difference from the software case is that we assume a
machine with memory parity which raises the memory BITE efficiency to 80
percent.

9.2.2.4 Parameters Affecting Fault Tolerance in the External Hardware

In the case of non-dedicated EEMs, we assume that hardware config-
urations require two EEMs to be fault free before system failure. This
corresponds to an jsolation efficiency of 0% when two EEMs are Teft.

9.2.2.5 Fault Recovery Parameters

The same remarks as in 9.2.1.5 and 9.2.1.6 are still valid.

9.2.2.6 Modeling Parameters

Simulation of the hardware-aided software configurations results
in the following modeling parameter values:

Parameter Value
£1 0.87
£2 O.fi

23,24,25 10
Vo 0.90
W2' 0.90

w3:W4sW5 1

9-6

7

L-6

PUTSICAL PARAMETIRS
a) Deiign Decidlons

TABLE %.2-Hl

3) PARMMETERS AFFECTING FAULT DETECTION AND |SOLATION IN THE COMPUTERS.

al Detection Efficiency

? [
meper of Computers Numdar 37 Computery 3 or mare
Tedicatad wan Dedicaied By Gwlri!nn!(” 1001 Voa | 0%
Mober of EDM CPU BETE i1 SR
Dedicated/Non Dmdicated Butes T
[e y— Merory B1TE an 8% | BOR
Maeber of Eaternal Devices Per Bus [
Rmber of Spare Comuters L 8) Tsotntion Erticsencyt?)
Mambar of ters dormore !l 2
b} Fallure Craracteristics
i tompar bsons ¢} roert19) [oat1?
11
] et m chy MITE 1] [
Merory BITE ;5 BOT
o i |28 | w4l e [57
T Dlagnosis 9751 §7.58
Nemory ary faso | U7 wso [s {5TP) !
et (i {we | w0 w0e | s
Buv ard Exgereal A oy o 4) PARMMETERS AFFECTING FAULT DETECTION A ISOLATION [N THY EXTERNAL HARDMARE
Cevices {1¥) L' - .Hm(”)
Iwpact of EEM Failurs on Bus 0%
Hber gt Taylts in the By o0t Wamber of TEMs 1 or more ? ¥
[AL
il Datection Efficiency | 100%¢ 100t o
Womber of Faults in Each Tsatation Efticiency | 10020 o wa. 00
External Oevlce 4
' b] Bus and External Devlces
- Bus
SOPTWARE CHARMCTERISTICS e of Buses T or mre 2 1
Tetection ffictency | 100T00F | voox 0! [
Syncaronous/dsymehrantut oy Ty
Scheduling Mechinise s Tsolation Efficiency | 10050 ¢ 4.
Tteration Period 10w
- For Each External Device
Minor Cycle Duration [
Wajor Cyche Guration Muober of Redundant Dewices 1 or more 2 '
ar *]

{30 £ o erteiomy teo Detection EfFictency Yl AL I
Tme Setween Comparisons in Ticlation Effictency el - L
Waaimm Oown Tiee 0w
felative Sizw of Winor 2 -

Cycte Prograa

Interrupt data

5} TRANSTENT FAULT RECOVERY PARAMETERS

L.IST OF INPUT PARAMETERS FOR HARDWARE CONFIGURA TIONS

Efficiency for | Efffciency for Maxioum Musber

P Fault Pemory Fault Burstion of Trials Time |bumit tr Use
RaVlahess sl ™ [Titit © Mom m“_“H
Aol lnack -30 S ,.!nl] el 1)
Bemary Copy T 19599 2000 =y a 1000 mx Ter
syten Restart 1oor 1) " V000 = w1l wilth ‘ o510

6} PERMANENT FALT RECGVERY PARAMETERS

Aiways dens by switching off or fgnoring the faulty computer,

once the permanent has been recmlnd.
it 1s switched in.

If a spare is avitladle,

Munter of Computers | 1 ar mre 4 1
Eictency 1005001 97.5¢ Pl
Durat lan A edc10 = wlFTF
FOGTNOTES
(1) Implicit parameter when each EEMfbus §3 dedlcsted to (B) This parameter ts valid only for perwanent faults. Dlagmsis 15
one CompUter. no help with transient favits,
{2) The bus by 1tsedf 13 comsidered sy un external device, {9) Isalation efficiency 11 Y001, once the fault has been detectsd Tn sinpler,
{3} 2: permanent fault rates o : dorwand faybt rate. {19) Implicit parsmeters,
1% transtent fault rate; 1/p: mean tramtent duralion. {17])" These parsoeters are not applicable with dedicated TEM: n this case, faulls
(4} Moe applicable when Lhere 13 no spare. 1in the ECM are consldersd as equivalent Lo €RY faulls.
(%) In thiy example, 1t ¢y assumed thal the four exterasl {12} Thesn parameters are O with a4 software TAR pincy there 11 oy EEN.
devices have the sam favlt rate. {43} Rollamedd ts used for 3 or more computers.
(&} Mon applicable wicn synchrgnoys scheduling. Rallsack 15 ysed for T or 1 computery.
[t} n-:n um-:un are w}m:. Mnr.‘tl‘e 1801 (14) Mo applicabie,
cr ictency 3 reached anly sfter the whole
5 betn Taercived 1.a. SPat 4 foll major cycla. [15) Wallahead 15 pretuded by on iatiud delay 10 4110w the tressiont te dbsvimaty
nn BITE featurs my speed up detaction. (1€) Irrelevant when EER ovv dmiicsted,

A total of more than ten million missions were simulated during the simula-
tion runs performed on this contract. When the state of the configuration
consisted of three or more working computers, there were no faults that
directly resulted in system failure.

9.2.3 Mostly-Hardware Configurations

These configurations use the same computers as those described in
Section 9.2.2. Thus, most of the parameters are the same. However, the
complexity of the EEM increases and the failure rate of the EEMs has been
estimated in this case to be 200 per million hours.

9-8

9.3 GENERATION OF RESULTS

9.3.1 Assessed Confiqurations

The configurations assessed are mostly-software, hardware-aided-
software and mostly-hardware with 3, 4, and 5-computers plus a duplex
configuration. |

The computers are all adaptive in that whenever two computers are
remaining, the system enters a residual duplex mode as described in Section
2.2.2.

Hardware configurations require two EEMs to be fault free before
system failure.

Two busses are required to be fault free for hardware and software
configurations. The case of adaptation of busses from duplex to simplex when

detection coding and I/0 wrap is used is also considered.

9.3.1.1 Quintuplex Configurations

Table 9.3-1 is a summary of quintuplex configuration assessments.
The entries‘are ordered in increasing 10-hour failure probability. Under _
"configuration type," HASW represents hardware-aided-software, MSW represents
mostly-software, and MHW represents mostly-hardware. The number under

“computers,” "EEMs," and "busses" indicate the redundancy of that device.
The two dedication columns indicate whether members of the neighboring

columns are dedicated or not {DED is dedicated while N/D is non-dedicated).
The table represents 14 different configurations.

Figures 9.3-T1 and 9.3-2 are plots of the failure probabilities
versus mission time and extended mission time, respectively, for the con-
figurations in Table 9.3-I. The curves are identified by numbers correspond-
ing to the "number" column of Table 9.3-1.)

Figure 9.3-1 shows failure probability as the ordinate on a-

12 and 1072, The abscissa is an equal increment

logarithmic scale between 10~
scale of mission time from 1 to 25 hours. Figure 9.3-2 is on log-log scale
with failure probability shown from]0"]0 to 10'2 and mission time from 1

to 1000 hours.

9-9

Failure Probability

107

'Io".IO

FIGURE 9.

3-1

7 9 11 13 Y5 17 19 21 23
Mission Time (Hours)

QUINTUPLEX FAILURE PROBABILITY VERSUS MISSION TIME
FOR _NON-ADAPTIVE BUSSES

9-10

— NSO 0o W

-
ha

25

— :
—_—

‘:—l .
o

Li-6

TABLE 9.3-1 SUMMARY OF QUINTUPLEX CONFIGURATION ASSESSMENTS

10 HOUR

CONFIGURATION | FAILURE
NUMBER TYPE COMPUTERS | DEDICATION | EEMs | DEDICATION | BUSSES | PROBABILITY
1 HASH 5 N/D 5 N/D 5 6.65(10)7 10
2 HASW 5 N/D 5 DED 5 6.71(10)719
3 HASW 5 N/D 5 N/D 4 | 1.37000)7°
4 HASH 5 DED 5 N/D 5 1.50{10)"°
5 MHW 5 N/D 5 N/D 4 1.59(10) 7
6 HASH 5 DED 5 DED 4 2.20(10)?
7 MHMW 5 DED 5 DED or N/D 5 2.90(10)°
8 MHMW 5 DED 5 N/D 4 3.60(10)°
9 MSW 5 N/D - - 5 4.90(10)°
10 MSW 5 DED - - 5 5.06(10)™°
1 HASH 5 " N/D 4 N/D 5 2.02(10)"8
12 HASH 5 N/D 4 N/D 4 2.09(10)"8
13 HASW 5 N/D 4 DED 4 2.23(10)78
14 HASW 5 N/D 4 N/D 3 9.60(10)7

Mission Time (Hours)

-2

FIGURE 9.3

QUINTUPLEX FAILURE PROBABILITY

VERSUS MISSION TIME FOR

-ADAPTIVE BUSSES

NON

£311190q0dg 34n{ied

Figure 9.3-3 shows the effect of adaptive busses in gquintuplex con-
figurations. Adaptive busses are achieved by error-detecting coding on the
busses and the use of I/0 wrap. When down to duplex busses, codes on I/0
wrap can identify a faulty bus. A1l curves are HASW. Curves 1 and 2 repre-

" sent dedicated EEMs with either 3 or 4 busses. Curve 3 represents a dedi-
cated EEM with 5 busses. Curves 4, 5, and 6 represent 5 non-dedicated EEMs
“with 3 busses, 4 busses, and 5 busses, respectively.

9.3.1.2 Quadruplex Confiqurations

Table 9.3-1I is a summary of the quadruplex configurations. The
entries are ordered by increasing failure probability. An explanation of
the columns of the table is given in Section 9.3.1.1 for quintuplex
configurations. |

Figures 9.3-4 and 9.3-5 are plots of the failure probabilities
versus mission time and extended mission time, respectively, for the con-
figurations in Table 9.3-II. The curves are identified by the numbers in
the "number" column of Table 9.3-II.

~ Figure 9.3-6 shows the effect of adaptive busses in quadruplex
configurations. A1l curves are HASW. Curves 1 and 3 represent dedicated
EEMs with 3 and 4 busses, respectively. Curves.2 and 4 represent non-dedicated
EFMs with 3 and 4 busses, respectively.

9.3.1.3 Triplex Configuratians

Table 9.3-I11 is a summary of the triplex configurations. Duplex
and TMR configurations are shown as well. The entries are ordered in in-
creasing failure probability. An explanation of the columns of the table
is given in Section 9.3.1.1. The failure probability for configuration
number 6, the MSW with dedicated busses, is verified by simulation. Some
entries represent more than one configuration with the same failure
probability.

Figures 9.3-7 and 9.3-8 are plots of the failure probabilities
versus mission time and extended mission time, respectively, for the config-
urations listed in Table 9.3-1II1 with the exception of TMR and duplex. TMR
and duplex curves will be shown .in Section 9.3.2. The curves are identified
by the number in the "number" column'of Table 9.3-1II.

9-13

" TR - THHERH R P
TTLE] y LI D] L e
+ f I~ T T T .,.....-.......--"‘"'- ‘&\2
|_,_ - —+ - |- ..“"ﬂ# _
} .—"‘f"_
i - 1 ---;’-ﬂg
-7 /*"-"-‘ |
10 [~ I~ ™ o I o 0 e U R
44 11 T T 3,4
NN P] EREESF by
HEES . Ex NN
T A
8 ’/f’ ﬂ‘ﬁ‘r
107° 7~ -
i e et
e - ’_._,. - - —
.11
AV4NI
/i /
;? ! /’ ﬁﬁﬁgk
:',:]0"9 [/
0 T I T
M —t —
_g -
£ ./f']
ar
: /
2
]0—11
10712 a
A 1

1

FIGURE 9.3-3

9 11 13 15 17 19 21 23 25
Mission Time (Hours)

QUINTUPLEX FAILURE PROBABILITY VERSUS MISSION TIME

FOR_ADAPTIVE BUSSES
9-14

GL-6

TABLE 9.3-11

SUMMARY OF QUADRUPLEX CONFIGURATION ASSESSMENTS

10 HOUR
CONF IGURAT ION | FAILURE

NUMBER TYPE COMPUTERS | DEDICATION | EEMs | DEDICATION | BUSSES | PROBABILITY
1 HASW 4 N/D 5 N/D 4 9.67(10)7°

2 HASH 4 N/D 4 DED or N/D 4 1.08(10)77

3 MHW 4 N/D 4 DED or N/D 4 1.45(10)77

4 HASW 4 DED 4 DED or N/D 4 1.71(10)"7

5 MHM 4 DED 4 DED or N/D 8 2.75(10)77

6 MSH 4 N/D - - 4 | 4.56(10)7

7 MSH 4 DED - - 4 4.68(10)7

8 HASW 4 N/D 5 N/D 4 8.76(10)"7

9 HASH 4 N/D 4 N/D 4 8.87(10)"’

10 HASH 4 DED 4 N/D 3 9.49(10)~’
1 HASH 4 N/D 3 DED 3 6.48(10)7¢
12 HASW 4 N/D E N/D 3 6.74(10)"°

10

10

1078

—
<:)I
-~

f—
Dl
(e 0]

Failure Probability

FIGURE 9.3-4

7 9 31 13 1 1719 21 23
Mission Time (Hours}

QUADRUPLEX FAILURE PROBABILITY VERSUS MISSION TIME
FOR _NON-ADAPTIVE BUSSES

9-16

25

Mission Time (Hours)

FIGURE 9,3-5

QUADRUPLEX FATLURE PROBABILITY

FOR NON-ADAPTIVE BUSSES

VERSUS EXTENDED MISSION TIME

100,

10

1078

8,9,10

A3111qRQOLg BunLiRy

9-17

Failure Probability-

107

1079

10 , . kf_;¢,f;mrdhﬁ‘,-ﬁgfﬁ S e

1012, R B :
] 5 9 13 17 21 25

Mission Time (Hours)

FIGURE 9.3-6 QUADRUPLEX FAILURE PROBABILITY VERSUS MISSION TIME
FOR ADAPTIVE BUSSES

9-18

6L-6

TABLE 9.3-1I1 . SUMMARY OF TRIPLEX CONFIGURATION ASSESSMENTS

x

.

, 10 HOUR

| CONFIGURATION e FAILURE
NUMBER TYPE COMPUTERS | DEDICATION | EEMs | DEDICATION | BUSSES | PROBABILITY
1 HASH 3 T 4 N/D or DED | 3 or 4 1.48(10)7>
2 HASH 3 B N/ 3 N/D or DED 3 1.86(10)"°
3 HASH 3 e 3 N/D or DED 3 2.05(10)°
4 MHW ‘é’_ * N/D 3 N/D or DED 3 2.71(10)7°
5 MHW a :,3-f7 DED 3 N/D or DED 3 2.84(10)°
6 MSW ' 3 N/D - - 3or 4 4.4(10)°
7 MSH Yy DED - - 3 4.5(10)™
8 s 3 N/D 3 N/D 3 1.3(10)™

Non/l’kdaptjyej’;,
9 - _'I,’J.uplwek' . 2 6(10)7%

107!

107

—r
[am}
]
w

——
OI
Fs

Failure Probability

10”

1078

3 5 7 9 1

13

15

‘ Mission Time (Hours)
FIGURE 9.3-7 TRIPLEX FAILURE PROBABILITY VERSUS MISSION TIME

F

N-ADAPTIY

17

Us

19

9-20

21

23

25

~ Mission Time {Hours)

3-8

FIGURE 9

TRIPLEX FAILURE PROBABILITY
"YERSYS EXTENDED MISSION TIME

ADAPTIVE BUSSES

FOR MNON-

A311190q044

adnjLed

9-21

"In the triplex case, adding adaptive busses does not significantly
decrease the failure probability, since most system failures are in the
computers and EEMs.

9,.3.2 Effect of Redundancy

Figure 9.3-9 shows that added redundancy yields a 1afge improve-
ment in failure probability. Here failure probability is shown versus
extended mission time. The curves represent configurations as shown below:

1. Quintuplex with five EEMs and four busses.
2. Quintuplex with four EEMs and four busses.
Quadruplex with five EEMs and four busses.
Quadruplex with four EEMs and four busses.
Triplex with four EEMs and three busses.

Triplex with three EEMs and three busses.

- T B W

TMR with three EEMs and three busses.
8. Duplex
Computers, EEMs, and busses are non-dedicated.
The results are summarized as shown below:
10 Hour

Failure Probability
Improvement Ratio

Configuration Over Simplex
Duplex | 4.3
T™MR 24
Triplex 160
Quadruplex 2.4(10)4
Quintuplex (4EEM) | 1.2(10)°
- Quintuplex (SEEM) : 1.7(10)6

It is interesting that each increment of redundancy gives about
two orders of magnitude improvement in failure probability.

9-22

Mission Time {Hours)

URE 9. 3-9

FIG
PROBABILITY VERSUS EXTENDED

ME FOR 5, 4, 3

MISSION T1

MPUTERS

AND 2 €O

. 100

=%
—

£3L1198G04d 3dn| ey

9-23

9.3.3 Effect of Non-Unity Recoverability

A recoverability (wi) of 1 has been assumed in the generated
results. Errors in recovery algorithms or single point failures could cause
a recoverability of less than 1.

Figure 9.3-10 shows how recoverability can affect failure proba-
bility in a plot over an extended mission time. The curves are identified
by numbers on the figure as follows:

—
.

Triplex with Wy = .99

2. Quadruplex with W, = .99
3. Quintdp]ex with Wi = .99
4, Triplex with Wy = .999

5. Quadruplex with Wy = .999
6. Quintuplex with w, = ,999

7. Triplex with Wy = .9999
. 9999

8. Quadruplex with w

9. Quintuplex with w .9999
10. Triplex with Wy = 1

11. Quadruplex with w, = .99999
12. Quintuplex with w. = .99999
13. Quadruplex with w., = .9993999
14. Quintuplex with w. = .999999
15. Quadruplex with w. = .9999999

. 9999999

16. Quintuplex with w
where i = 3, 4, 5. Here we exclude busses and dedicate the EEMs.

The figure shows that short mission times are affected more by non-
unity recoverability. Also the survivability gained by added redundancy can
be overshadowed by recoverability. When recoverability is the greatest contrib-
utor to failure, then redundancy becomes a disadvantage as can be seen from
the initial mission hours of curves 1, 2 and 3.

9-24

Mission Time {Hours)

FIGURE 9,3-10

UNITY RECOVERABILITY

ON FAILURE PROBABILITY FOR

EFFECTS GF NON

EXTENDED MISSION TIMES

=3
'
=]
. L

T n
[
=)

=

A111192q04g dan|}ey

9-25

Effects of Adaptivity

Adaptive configurations can adjust to a new fault tolerant scheme
when units have been recorded as faulty. More adaptable systems admit more
faults than less adaptable systems, increasing their discrete fault tolerance.
(Discrete fault tolerance also depends on the level of redundancy.} Adapta-
bility allows an improvement in failure probability while non-adaptability
causes a degradation at the same level of redundancy.

quadruplex, and triplex imply adaptive cases where voting in the prime method
of fault detection and diagnosis with three or more fault free computers.

A residual duplex mode is entered when two computers remain. Two out of N
and TMR configurations have no residual duplex, while QMR is a non-adaptive

3 out of 5 vote.

It is interesting that QMR has five computers and a greater failure
probability than the four computer configurations. This is because it has
a discrete fault tolerance no greater than quadruplex and more computers to
have faults.

Figure 9.3-11 shows the effects of adaptivity on failure probability
over extended mission times. |

9,3.5 Effects of RETs

The method to study the RETs consists in identifying the input
parameters which are affected by the introduction of each RET. Then simula-
tion runs are made with parameters representing the presence and the absence
of these RETs. When possible, an alternative method consists in computing
the impact of modifying one parameter in one run, thus avoiding one simulation

run. From these runs, we get different sets of parameters which are used for
analytical modeling.

9.3.5.1 DRO Versus NDRO

Three cases of hardware aided software NMR have been studied. The
three systems are identical except for the memory and one recovery algorithm,
The first one has DRO memory and no memory copy. This is why many transients
in multiplex cannot be corrected. The second one does include a memory copy.

9-26

L2-6

TABLE 9.3-1V

SUMMARY OF THE EFFECTS OF ADAPTABILITY

: Failure Probability
10 Hour Degradation Ratio
. Failure (With Respect Discrete
Configuration Probability To The Adaptive Case) Fault Tolerance
. -9
Quintuplex 1(10) 1 4
5 2 out of 5 6(10)7° 6 3
Computers -6
QMR (3 out of 5) 1.5(10) 1500 2
4 Quadruplex ' 1,4(10)'7 1 3
Computers 2 out of 4 7(10)'7 5 2
R -5
3 ‘Tr1p1ex 2(10) 1 2
Computers lTMR 1.3t 6.5]

Mission Time (Hours)

3-N

MISSION TIMES

FIGURE 9

ADAPTABILITY ON FAILURE
PROBABILITY FOR EXTENDED

1000

@

Ll
_ o
<
-

e o gramapes g ;
|

|

i

1

Simplex

A3L11qeqodq adny ey

2 out of 4-—ffffﬁii

Mission Time (Hours)

9-28

Most transients are corrected and the leakage is very low. Finally the third
'System has a NDRO memory, and of course, no memory copy. MWe assume that the
‘technology involved in NDRO memories implies slightly higher failure rate and
. that transients changing a memory content accounts for 1% of all memory tran-
sient. Furthermore runs are made with 2 different values for the transient

« duration: 1 microsecond and 1 millisecond. Results of the simulation are

- indicated in Table 9.3-V.

Fault DRO. (2=250 107®) | DRO (=250 107%) | NDRO (»=300 1076
Duration No Memory Copy .. Memory Copy No Memory Copy
b\l \ Bty | 4 b (fhets | 4 (dy |Gty
Tus 870.330 .33 | .e7r[.33] 10t | .s1[1078 1672
Tms .87| .45 .45 - .87} .45 107% 51 .20 .20

TABLE 9.3-V LEAKAGE COEFFICIENTS

‘ j It appears that using a NDRO improves dramat1ca11y the 1eakages

in duplex and simplex. However it decreases. slightly the leakage in mu1t1-
pléx (due to the absence of memory copy) and also increases the failure rate
of the memory. Thus, we need using the analytical model to draw more precise
conclusions.

Figures 9.3-12 - 9.3-14 111ustrate the results obtained for duplex, -
triplex, quadruplex and quintuplex. These curves p]ot the 10- hour failure
probability versus the transient fault rate for d1fferent types of memory
and various recovery algorithms and fault durations. In this section we are
interested only in the influence of the type of memory. We examine the curves
whose last digits are either 6 or 7. It appears that an NDRO memory improves
the system surv1vab111ty in most of the cases. It does not if the transient
rate is very Tow. - This may ;]sq be verified by comparing thrves'z and 4. This

9-29

Ten-Hour Failure Probability

HASW QUINTUPLEX

-3
107 T AT S EER T T e 1. DRO; No Transient
i[;' jl;; UL P T EE P b e e T Loverage
il SRR NRER RN NR AR R DR RN SRR NRRNN
e o L 2. DRO; No Memory
ool T T 'T TP TE A Copy Transient
-4 : ! = LT Duration, 1 ms
]0 M b IR N D TR A o i o 100 0 S SR Sy | 17 S0 96 A O 0 N O » T
'?LE 3. DRO; No Memory
Th Copy Transient
i Duration, 1 us

4. NDRO; Transient
Duration, 1 ms

5. DRO; Memory Copy
Transient
Duration, 1 ms

10 i
R 6. DRO; Memory Copy
Transient

Duration, 1 us

7. NDRO; Transient
Duration, 1 us

—
cI

For DRO memory, com-
puter permanent fault-
rate is 550 failures

1078 1. e per million hours.
L ‘ J”‘6
? -1 For NDRO memory, com-
| i 7 puter permanent fault-
‘ . B —] T rate is 600 failures
10~ - » BARNEE i per million hours.
o e e TR e T
. ; oo F SR 1
| :;g_ L .;t{; e 'j};‘f{?"; ERANEA AR
w0 100] i
0 200 4000 . 6000 8000

10000 12000
Transient Fault-Rate (Failures per 106 Hours)

FIGURE 9.3-12 -~ 10-HOUR FAILURE PROBABILITY VERSUS TRANSIENT
FAULT RATE

9-30

len-Hour tailure Probability

HASW QUINTUPLEX

DRO; No Transient
-Coverage

ERE IS S B O | ShY 2. DRO; No Memory
il T R R S I N o et o f ot fle e hige st fended - Copy Transient
IR ER e f g - AT EUAEE B Duration, 1 ms

o 3. DRG; No Memory
i B . Copy Transient
- " Duration, 1 us

(53]

—d
cDI

.1 -4, NDRO; Transient
. Duration, 1 ms

DRO; Memory Copy
Transient
Duration, 1 ms

—r
Dl
[=)]
()]

6. DRO; Memory Copy
_ Transient
Duration, 1 us

S 7. NDRO; Trdnsient
. * Duration, 1 us

i e e |!]|] N e nai
100 1000 10,000 - 100,000 1,000,000

Transient Fault-Rate (Failures Per 106 Hours)

FIGURE 9.3-13 10-HOUR FAILURE PROBABILITY VERSUS TRANSIENT
FAULT RATE

9-31

is due to the fact that the main advantage of NDRO is to enhance the proba-
fility of recovery from a transient fault in duplex. It can also be noted that
the improvement is more dramatic in triplex than in quintuplex because a
triplex system has a higher probability to degrade to duplex. The other
curves are described in Section 9.3.6.

9.3.5.2 Effects of BITE

Built-in-test equipments permit detection and isolation of a
fault in a computer without using such devices as voters and comparators nor
a diagnosis routine.

Even though it may decrease slightly the time between occurrence of
a fault and its detection, it has no measurable effect in a multiplex system.

In duplex BITE are essential. They make possible to isolate many
transient faults which could not be isolated through diagnosis, since the
transient would have disappeared when the diagnosis is run (improvement of
diagnostibility vz).

In simplex BITE are also essential, since they provide the only way
to detect transients (improvement of leakage l]).

Effects of BITE are given for two software adaptive TMR configura-
tions. We see that improving duplex and simplex does improve an adaptive TMR.
This improvement would be less significant with quadruplex and especially
quintuplex since it is unlikely that such configurations dégrades down to a
simplex. Table 9.3-VI shows the improvements due to BITE for a software
adaptive TMR. Similar results could be obtained with a hardware configuration.

v 1-4 Failure Probability
2 1 After 100 Hours
BITE 0% | 8% " ox1074
No BITE | 712 | o 55x10"%

TABLE 9.3-VI EFFECTS OF BITE

9-32.

HASW DUPLEX, TMR AND 4-MR

The first digit on each
curve refers to the
number of computers.

‘. =T -1 4311 - 1-F T-FF] - =3+ 34} F-3=t-F-4- [+ F4-

The second digit refers
to implementation de-
tails and fault dura-
tion as explained below.

1. DRO; No Transient
Coverage

2.. DRO; No Memory
Copy Transient
Duration, 1 ms

3. DRO; No Memory
‘Copy Transient
Duration, 1 us

4. NDRO; Transient
: Duration, 1 ms

5. DRO; Memory Copy
Transient
~Duration, 1 ms

Failure Probability

6. DRO; Memory-Copy
Transient
Duration, 1 us

7. NDRO; TFansient
Duration, T us

—

— T |
0 © 3000 6000 9000 - 12000
6

- Transient Fault-Rate (Failures Per 10 Hours)

FIGURE 9.3-14 10-HOUR FAILURE PROBABILITY VERSUS TRANSIENT
S " FAULT RATE o

- 9-33

9.3.5.3 Effects of Diagnostics

Diagnostics are not useful in multiplex since voting provides isola-
tion of a fault. In duplex, they are essential since they provide isolation
of a fault, once it has been detected through comparison. In simplex, they can
be used if they are run periodically. However they will catch very few tran-
sients. Their only usefulness is that they can provide a warning that the
system has failed.

»

Effects of diagnostics are assessed by simulating a configuration
with diagnostics. Counting the number of times a diagnostic routine is called
and dividing by 2 provides the number of failures due to the absence of
diagnostics. Table 9.3-VII gives the results for two adaptive software N-plex
configurations.

Quadruplex Triplex
Diagnostibility
F(100) F(10) F(100} vy

Di 2 '5 -6 “'4

iagnostics 18x10 15x10 19x10 0%
No Diagnostics | 56x10™° | 58x107® | 44x107% 61%

(But BITE are

present)

TABLE 9,3-VII FAILURE PROBABILITIES AFTER 10 AND 100 HOURS FOR
QUADRUPLEX AND TRIPLEX WITH AND WITHOUT DIAGNOSTICS

9.3.5.4 Codes and I/0 Wraparound

In order to include error correcting/detecting codes in the candi-
date computers, extensive hardware modification is required. This is not
within the realm of "off-the-shelf computers" and will not be considered here.
Single error detecting codes in memory (parity) are built into some of the
candidate computers and are considered as a part of BITE. Codes and 1/0 wrap-

around checks are useful for error detection and fault masking in the I/0
system.

9-34

Single error correcting/double error detecting codes allows one
fault to occur before the hardware becomes inoperative. The reliability
model to be used for the area covered by the code is

R = &M (1+cAT)

where A = failure rate of the bus and the code generating and decoding
circuitry.

In the configurations we have assessed three or more redundant
serial busses were postulated. Section 9.3.1 showed the effect of adding
detecting codes and I/0 wrap to the bus {allows adaptability). Error
correcting codes on serial busses are not practical because bus faults will
probably affect more than one bit. ' | |

To show the effect of error correcting codes. on busses, we use a
four-bit, byte-serial bus as a strawman. We compare-a simplex error-
correcting bus with a dub]ex error-detecting bus. The simplex bus requires
7 wires plus coding/decoding circuitry which yields a failure rate of. 7 x 6
failures per 106 hours = 42. The duplex bus requires 4 wires per bus plus
détection/diagnosis circuitry for a failure rate of 4 x 6 failures per'm6
hours = 24 per bus.

-

Figure 9.3-15 shows coded simplex versus duplex for various values
of coverage. Coded simplex is sTightly better with non-unity coverage because
of the Tower total failure rate, A TMR bus is included with duplex coverage
values of 0 and .9 with A= 56.

9.3.5.5 Reasonableness Tests and Sensor Redundancy Management

Sensors may be either self-checking error-indicating or non self-
checking. Multiple non-checking sensors require at Teast three to resclve a
faulty sensor when comparison is used for error detection. Selection of the
median sensor value is a good method of generating a common input for all
computers. Median selection masks the effect of a sensor that has deviated
by a large amount from the true value while averaging weighs the effect of all
sensors equally. Any sensor that deviates more than a fixed amount from the
median is indicated as faulty. Deferring final judgment on whether a sensor

9-35

has permanently failed until fault indications appear two or more times in
a row reduces the number of sensor transients recorded as permanent.

Reasonableness tests can provide a method of isolating a faulty
sensor when one or two copies are in use. The tests check if the difference
in successive sensor values do not exceed a specified limit. In some cases,
a total system analysis is required to resolve a faulty sensor.

Truncation of least significant bits is not a good method of resolv-
ing sensor values. It is possible for two binary values to differ by one
arithmetically and to have no bit positions that are equal.

In order to provide a feeling of the usefulness of the reasonable-

ness tests, the following simulation runs have been made. The system is a
software TMR (Table 9.2-1) where we include a sensor whose failure rate is

650 faults per mission hours (equal to the computer failure rate). In the
first run we suppose there is no way of deciding which sensor is good if there
are only two of them working and they disagree. In the second run, in 80% of
the cases, the system is able to decide which sensor is good. Finally, we
also compare with results obtained when sensors are supposed to be perfect.
The results are listed in Table 9.3-VIII.

TABLE 9.3-VIII EFFECTS OF REASONABLENESS TESTS

Failure Probability
After 10 Hours

Sensor No Reasonableness Test 100x10'6
Sensor Reasonableness Test’ 42x10'6
Perfect Sensors 15x10'6

A sensor may be dedicated to one input bus or be available to all
busses. If sensors are dedicated to busses and busses to computers, then the
Toss of one computer causes the loss of all sensors on the bus associated
with the computer. The less dedication there is, the better it is, as can

9-36

N
¥

Mission Time (Hours)

A1111qeqoad @uny ey

FIGURE 9.3-15 COMPARISON OF CODED SIMPLEX, DUPLEX AND TMR BUSSES

9-37

be seen from Table 9.3-IX. We have made two simulation runs. In the first
run, sensors are dedicated to busses and busses to computers. In the second
run, sensors are non dedicated. In both cases, reasonableness are present.

 TABLE 9.3-1X EFFECTS OF NON-DEDICATED SENSORS

Failure Probability
After 10 Hours

Dedicated Sensors 94x10°°
Non-Dedicated Sensors 42x1070
Perfect Sensors 15x10°0

5.3.5.6 Voters, Adaptive Voters, and Comparators

Voters have the capability of polling the output of N elements
and "voting" a consensus output when M elements agree (N=M). Adaptive
voters differ from voters in that N and M may vary during a mission.
Adaptive voters give rise to adaptive configurations while voters are used
for "NMR" configurations. One type of voter is required for configurations
of three or more computers in either a hardware or software implementation.
A variation in the type of voter used implies a change of configuration.
VYoting is evaluated in Section 9.3.4.

Comparators are used in duplex cbnfigurations and may have either
a hardware or software implementation. Hardware comparators may or may not
have a seif-checking feature. The self-checking feature signals the computers
when the comparator fails and allows a switch to simplex.

If self-checking comparators fail, the duplex system will recognize
this failure and degrade to simplex since error detection by comparison is
no longer possible.

If non-self-checking comparators fail, an erroneous disgareement
signal will be generated. A rollback will be attempted and will apparently
fail. Diagnosis will be inconclusive, since no computer is faulty. The

9-38

monitor will select a computer for simplex by a coin flip, and of course,

will select a fault free one. Therefore, self-checking comparators only allow
the system to recognize a comparator failure without going through the trauma
of an inconclusive diagnosis.

9.3.5.7 Dedicated/Non-Dedicated I/0 Units

The impact of dedicating the not dedicating I/0 units is shown in
Section 9.3.1. Several configurations where computers, EEM's, and I/0 busses
are and are not dedicated are evh]uated. The results show that it is best
to not dedicate computers to EEM's, but failure probability improvement is
achieved by dedicating EEM's to busses.

9.3.5.8 Independent Hardware Monitor

The independent hardware monitor (IHM) may have one of three-
purposes:

1. As a laboratory tool to test system performance,
2. As a fault recorder to aid in ground maintenance, and
3. As an error checking device to signal a system error.

The first two purposes, although useful, are not in the realm of fault
tolerance. It is important, however, that the system has no faults prior
to a mission. '

In fault-tolerant computer design, the designer identifies all the
possible faults that can occur in the system and labels it the fault set.
A fault-tolerant design then protects the system from faults within the fault
set. Overlooked faults and hardware and software design errors that have not
been uncovered during checkout can cause a system failure. These causes of
system failure cannot be exactly quantified because they would be corrected
if they are identified. For modeling purposes, the probability of such an
event is taken to be much smaller than the overall failure probability during
the mission,

The THM can detect some system faults by reasonableness tests. The
tests would verify that the difference between the present outputs and the
previous outputs does not exceed a specified limit. The effectiveness of the

9-39

tests depends on the application, and we estimate them to be between 25 and
75 percent effective. The IHM can also serve as a 1imit detector on the
actuators.

If the failure is due to a software error, redundant algorithms
could be used for critical programs. The only recourse from a failure of the
alternate computations is a system restart.

9.3.6 Effects of Transients

In order to enhance the reliability of the system, transient
.recovéry should be provided. If not, transient faults would have the same
effect as permanent and would cause the loss of a computer. Furthermore,
transients are very difficult to diagnose and thus lack of provision for
transient recovery in duplex would decrease the diagnostibility.

Once transient recovery has been decided, the algorithms have still
to be chosen. Here, it will be seen that the distribution and the duration
of transients are important and should be known if best results are to
be obtained.

9.3.6.1 Introduction of Transient Recovery

In Figures 9.3-12 - 9.3-14, curves whose last digit is a 1 repre-
sent the survivability of HASW system without any kind of transient recovery
(except adaptability). It can readily be seen that introducing a transient
recovery algorithm {(even a bad one} always improves dramatically the surviv-
ability. This improvement is even more than it appears on these plots since
the curves without transient recovery do not take into account the decrease
in duplex diagnostibility.

9.3.6.2 Transient Recovery Algorithms

9.3.6.2.1 Duplex

The recovery procedure in duplex is the rollback. On Figure 9.3-14
curves 2.2 (interrupted by the crash of the system where the plotting was
done}, 2.3 and 2.7 illustrate improvement due to rollback. Curve 2.7
corresponds to a NDRO memory where rollback is very efficient since transients
causing program memory damage are very rare.

9-40

9.3.6.2.2 Mu]tig]ex

For the cases with 3 or more computers, rollback is replaced by
rollahead. Thus computation is not interrupted. Comparing, for example,
curves 3.1 and 3.2 or 3.3 of Figure 9.3-14 shows the improvement due to
introduction of recovery algorithm in an adaptive TMR. However, rollahead
does not correct those transients which damage the memory. That is why the
memory copy is introduced (curves 3.5 and 3.6). Another solution consists
in replacing the DRO memory by a NDRO memory (curve 3.7).

9,3.6.3 Influence of Transient Duration

The plots of Figures 9.3-12 - 9.3-14 illustrate what happens
when the average transient duration is 1 micro- and 1 millisecond, Results
are always worse in the case of a long transient. This is due to the fact
that the recovery begins when the transient is still active, thus causing the
recovery not to be successful. In order to avoid that, a delay can be intro-
duced between detection and start of recovery (see Section 5.4.7).

9.3.6.4 Influence of Bursts of Transients

Up to now, it was always assumed that transients arrived isolated
in time, according to the transient fault rate. When transient faults arrive
in bursts, it is supposed that during a short period (of the order of a
second) many transients hit the same unit. This corresponds to a component
who would work for a while at the limits of its tolerance specifications.

We have made one simulation run supposing that the memory of the
computers could be hit by bursts. We suppose that there are 80 bursts per
million hours. A burst in average lasts half a second and during a burst the
transient fault rate is 5 per second. Thus, on the average, there are 200
transients per million hours in the memory. It can be seen that this is a
mild burst environment. Other inputs were the same as for the software TMR
of Table 9.2-1. No other transients hit the memories.

Results are intriguing: the system degrades to duplex 5 percent
more often than without burst. This is due to the fact that many bursts are
mistaken as permanents. The number of times a diagnostic is called is in-
creased by 8 percent. Thus a non-adaptive TMR system in a burst environment

9-41

would have an 8 percent larger system failure probability than the same

system without bursts. However, the diagnostibility is improved by the bursts,
This is due to the fact that a diagnostic routine is likely to return a fault
indication. This increase in diagnostibility makes the adaptive TMR in a
burst environment more reliable than in a Poisson environment.

A way to decrease the probability of mistaking a transient for
a permanent would be to decrease the “"Recurrence Interval." The recurrence
interval (3s) is used in the following way: if a fault is redetected less
than 3 seconds after its recovery attempt, it is assumed that the fault is
permanent. Decreasing the recurrence interval would obviously help for
burst. Decreasing the recurrence interval too much would cause the system to
continue to attempt transient recovery on a permanent fault.

The wide variations in the results of this section show that a
better knowledge of the transient environment is necessary in order to
optimize transient recovery. A second conclusion is that NDRO is an
excellent protection against transient damage.

9.3.7 Scheduling Effects

Fault recovery is not an instantaneous action. Thus, a fault
recovery may cause the system to miss some iteration(s). If it is not
catastrophic to miss a few consecutive iterations, then all properly designed
systems will tolerate fault recovery without problems. However, if for the
safety of the flight, it is dangerous to miss more than one iteration, then
the scheduling may be an important factor in the survivability.

We have studied 3 cases of software TMR: 2 synchronous schedulings
and one asynchronous. 1In all cases, we suppose that the basic iteration period
is 30 ms and that the major cycle lasts 100 perijods.

The first synchronous case corresponds to a light load and a fast

comparison: the minor cycle lasts 5 ms and comparisons also take place every
5 ms.

The second case corresponds to a heavy load and a slow comparison:
the minor cycle lasts 15 ms and comparison also takes place every 15 ms,

9-42

The third case is an asynchronous scheduling:
be interrupted by minor cycle tasks which last an average of 5 ms.

also occur every 5 ms. The major difference between asynchronous and synchronous

major cycle tasks can

Comparisons

scheduling is that since a minor cycle task can interrupt a major cycle task,
a fault may cause damage in more than one program and thus be detected more

than once.

In all cases, it is assumed that a system failure occurs when 2

or more .iterations are successively missed.

Results are given in Table 9.3-X.

Triplex Duplex . cpss Failure
Leakage | Leakage D1agn03t1b111ty Probability
£3 £, 2 After 100 Hours
Synchronous _4 -4
Light Load 10 21.5% 90% 19x10
Synchronous -4 -4
Heavy Load 10 ‘21.5% 73% 41x10
Asynchronous | 107 21.5% 874 21x107%
TABLE 9.3-X EFFECTS OF SCHEDULING

A heavy load is not a problem in triplex (or 4-plex and 5-plex)

since recovery does not interrupt significantly the normal flow of computation.

However, in duplex the situation is quite different.
place every 15 ms, rollback duration is 15 ms long.

Since comparisons take
If the rollback is suc-

cessful, the mission is not endangered. Thus the leakage 12 does not vary.
But if the rollback is unsuccessful, diagnostics have to be run to allow
It happens rather often that there is not enough time

simplex operation.

to run these diagnostics.
probability increases significantly.

The diagnostibility decreases and the failure

Asynchronous scheduling may cause a few transients to be mistaken
as permanents since they damage a few programs and are detected more than
once. However, the increase of the leakage l3 is not having any significant

9-43

consequences: it is as if the permanent fault rate was increased by one
thousandth, The diagnostibility is slightly less than with the synchronous
case because the asynchronous organization makes it slightly more likely to
miss more than one iteration during the sequence rollback-diagnostics.

In conclusion, it appears that a heavy computational load is to be
avoided. If it cannot be avoided, 5 plex and 4 plex are better than triplex
since it is less likely to degrade to duplex with these systems. Asynchronous
scheduling makes little difference from synchronous schedu]ing.‘ This does not
take into account the higher complexity of an asynchronous system which may
cause some extra failures not taken into account by the simulation.

9-44

9.4 CONCLUSIONS

The conclusions reported below were obtained by use of CAST.
They are based on a ten-hour flight and failure rates thought to be applicable
to the off-the-shelf avionics computers studied. The reconfigurable computer
systems were assumed to be composed of as many as five machines.

As shown in Figure 9.3-11, the greatest improvement in system
survivability is obtained by increased redundancy. Each increment of redun-
dancy decreases the 10-hour failure probability by approximately two orders

of magnitude. The greatest failure probability decrease occurs when changing
‘from triplex to quadruplex, e.g., a 200-fold improvement. Increasing redun-
dancy also increases cost in terms of power, weight, and volume not only due
to the added units but due also to the increased complexity of intercommunica-
tions modules, external electronics modules, and bus switches.

Increasing redundancy has diminishing returns if there are errors
in permanent-recovery algorithm design. This error penalty becomes more
severe with added redundancy as was shown in Section 9.3.3. Using simpler
recovery algorithms, i.e., those involving less RCS adaptivity, is a possible
way of ensuring error-free recovery. However, the increase in failure prob-
ability for air-transport-type missions due to decreased adaptivity (e.g., not
adapting the system down to one computer is less than that caused by decreased
redundancy or recoverability.

Since redundancy has such a large effect on failure probability,
external hardware should have an equivalent redundancy to prevent external
failures from depressing the overall survivability.

The techniques reported here devote much attention to the modeling
of transient faults. The results show that a knowledge of the transient envi-
ronment results in effective transient recovery features. Underestimating
transient duration results in many transients being recorded as permanent,
while overestimating transient duration leaves the system unduly vulnerable
to further faults.

Finally, subject to the qualifications and assumptions described in
the first paragraph of this subsection, configuration assessment has shown that
hardware-aided software configurations provide a lower probability of failure
than mostly-hardware or mostly-software configurations.

i

9-45

THIS PAGE INTENTIONALLY LEFT BLANK

9-46

REFERENCES

AVIZ 72 Avizienis, A., "The Methodology of Fault-Tolerant Computing,"
Proc. First USA-Jdapan Computer Conference, 1972.

BOUR 69 Bouricius, W.G., et al., "Reliability Modeling Techniques For
Self-Repairing Computer Systems," Proc. ACM 1969 Ann. Conf.

BOUR 71 Bouricius, W.G., et.al., "Reliability Modeling for Fault-Tolerant
Computers", IEEE Transactions on Computers, Yol. C-20, No. 11,
November 1971.

DAVE 58 DaVenport, W.B., and Root, W.L., Introduction to Random Signals
and Noise, McGraw-Hi1l, New York, 1958.

DENN 67 Denneky and Krzywiki, Mathematics for Physicists, Harper, 1967.

HILL 70 F.S. Hillier, G.J. Lieberman, Introduction to Operations Research,
pp. 447-450, Holden-Day, Inc., San Francisco, 1970.

KRUU 63 Kruus, J., "Uppér Bounds for the Mean Life of Self-Repairing
Systems," Report R-172 Coordinated Science Laboratory, University
of I1linois, July 1963.

LIPS 68 Lipschufz, Linear Algebra, Schaum Outline (McGraw-Hi11), 1968.

LYON 62 Lyons & Vanderkulk, "The Use of TMR to. Improve Computer Reliability,"
IBM Journal, April 1962. '

PARZ 60 Parzen, E., Modern Probébi]ity Theory and Its Applications, pp. 251-
263, Wiley & Sons, 1960.

RATN 73 Ratner, R.S., et.al., "Design of a Fault-Tolerant Airborne Digital
Computer, Volume II - Computational Requirements and Technology,"
NASA Contract NAS1-10920, Stanford Research Institute, October,
1973.

ROHR 73 Rohr, John A., "System Software for a Fault-Tolerant Digital Computer,"
Ph.D. Thesis, University of Il1linois, 1973.

SHRE 66 Shreider, Y.A., The Monte Carlo Method, Pergamon Press, New York,
1966. :

TSOU 73 Tsou, Ed., Daly, H.S., Swearingen, C.N., "Highly Reliable Processor
System for Space Application," AIAA Computer Network Systems
Conference, Huntsville, Alabama, April, 1973.

- ULTR 74 "Fault-Tolerant Avionics Systems Architectures Study," Ultrasystems,
Inc., April, 1974, AFAL Contract F33615-73-C-1163.

THIS PAGE INTENTIONALLY LEFT BLANK

Appendices A, B, and C contain proprietary data from various
computer manufacturers. Thus these appendices have been distributed only
to Government representatives at Langley Research Center.

